Hyperspectral imaging in the infrared bands is traditionally performed using a broad spectral response focal plane array, integrated in a grating or a Fourier transform spectrometer. This paper describes an approach for miniaturizing a hyperspectral detection system on a chip by integrating a Micro-Electro-Mechanical-System (MEMS) based tunable Fabry Perot (FP) filter directly on a photodetector. A readout integrated circuit (ROIC) serves to both integrate the detector signal as well as to electrically tune the filter across the wavelength band. We report the first such demonstration of a tunable MEMS filter monolithically integrated on a HgCdTe detector. The filter structures, designed for operation in the 1.6-2.5 μm wavelength band, were fabricated directly on HgCdTe detectors, both in photoconducting and high density vertically integrated photodiode (HDVIP) detectors. The HDVIP detectors have an architecture that permits operation in the standard photodiode mode at low bias voltages (≤0.5V) or in the electron avalanche photodiode (EAPD) mode with gain at bias voltages of ~20V. In the APD mode gain values of 100 may be achieved at 20 V at 200 K. The FP filter consists of distributed Bragg mirrors formed of Ge-SiO-Ge, a sacrificial spacer layer within the cavity and a silicon nitride spacer membrane for support. Mirror stacks fabricated on silicon, identical to the structures that will form the optical cavity, have been characterized to determine the optimum filter characteristics. The measured full width at half maximum (FWHM) was 34 nm at the center wavelength of 1780 nm with an extinction ratio of 36.6. Fully integrated filters on HgCdTe photoconductors with a center wavelength of approximately 1950 nm give a FWHM of approximately 100 nm, and a peak responsivity of approximately 8×104 V/W. Initial results for the filters on HDVIP detectors exhibit FWHM of 140 nm.
[1]
Edwin M. Winter,et al.
Compact Airborne Spectral Sensor (COMPASS)
,
2001,
SPIE Defense + Commercial Sensing.
[2]
J. Carrano.
Tuning in to Detection
,
2004
.
[3]
M. Kinch,et al.
The HgCdTe electron avalanche photodiode
,
2006,
2006 Digest of the LEOS Summer Topical Meetings.
[4]
F. Ma,et al.
HgCdTe electron avalanche photodiodes
,
2004
.
[5]
Craig R. Schwartz,et al.
Comparison of infrared imaging hyperspectral sensors for military target detection applications
,
1996,
Optics & Photonics.
[6]
Robert W. Basedow,et al.
HYDICE system performance: an update
,
1996,
Optics + Photonics.
[7]
Pradip Mitra,et al.
Multispectral long-wavelength quantum-well infrared photodetectors
,
2003
.
[8]
L. Faraone,et al.
A monolithically integrated HgCdTe SWIR photodetector and tunable MEMS-based optical filter
,
2005,
SPIE Defense + Commercial Sensing.
[9]
K. Fynn,et al.
Improved device technology for epitaxial Hg1-xCdxTe infrared photoconductor arrays
,
1994
.
[10]
Michael A. Kinch.
HDVIP FPA technology at DRS Infrared Technologies
,
2001,
SPIE Defense + Commercial Sensing.