The natural-constraint representation of the path space for efficient light transport simulation

The path integral formulation of light transport is the basis for (Markov chain) Monte Carlo global illumination methods. In this paper we present half vector space light transport (HSLT), a novel approach to sampling and integrating light transport paths on surfaces. The key is a partitioning of the path space into subspaces in which a path is represented by its start and end point constraints and a sequence of generalized half vectors. We show that this representation has several benefits. It enables importance sampling of all interactions along paths in between two endpoints. Based on this, we propose a new mutation strategy, to be used with Markov chain Monte Carlo methods such as Metropolis light transport (MLT), which is well-suited for all types of surface transport paths (diffuse/glossy/specular interaction). One important characteristic of our approach is that the Fourier-domain properties of the path integral can be easily estimated. These can be used to achieve optimal correlation of the samples due to well-chosen mutation step sizes, leading to more efficient exploration of light transport features. We also propose a novel approach to control stratification in MLT with our mutation strategy.

[1]  Anton Kaplanyan,et al.  Adaptive progressive photon mapping , 2013, TOGS.

[2]  Henrik Wann Jensen,et al.  Global Illumination using Photon Maps , 1996, Rendering Techniques.

[3]  Steve Marschner,et al.  Microfacet Models for Refraction through Rough Surfaces , 2007, Rendering Techniques.

[4]  Donald P. Greenberg,et al.  Global Illumination via Density Estimation , 1995, Rendering Techniques.

[5]  Philipp Slusallek,et al.  Light transport simulation with vertex connection and merging , 2012, ACM Trans. Graph..

[6]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[7]  J. Munkres,et al.  Calculus on Manifolds , 1965 .

[8]  Tokiichiro Takahashi,et al.  Principles and applications of pencil tracing , 1987, SIGGRAPH.

[9]  Pramook Khungurn,et al.  Bidirectional lightcuts , 2012, ACM Trans. Graph..

[10]  Szymon Rusinkiewicz,et al.  A New Change of Variables for Efficient BRDF Representation , 1998, Rendering Techniques.

[11]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[12]  HanikaJohannes,et al.  The natural-constraint representation of the path space for efficient light transport simulation , 2014 .

[13]  Yu-Chi Lai,et al.  Metropolis photon sampling with optional user guidance , 2005, EGSR '05.

[14]  Leonidas J. Guibas,et al.  Bidirectional Estimators for Light Transport , 1995 .

[15]  Leonidas J. Guibas,et al.  Robust Monte Carlo methods for light transport simulation , 1997 .

[16]  Jan Kautz,et al.  Fourier analysis of stochastic sampling strategies for assessing bias and variance in integration , 2013, ACM Trans. Graph..

[17]  James T. Kajiya,et al.  The rendering equation , 1998 .

[18]  John Odentrantz,et al.  Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues , 2000, Technometrics.

[19]  Jaakko Lehtinen,et al.  Gradient-domain metropolis light transport , 2013, ACM Trans. Graph..

[20]  Steve Marschner,et al.  Manifold exploration , 2012, ACM Trans. Graph..

[21]  H. Jensen,et al.  Progressive photon mapping , 2008, SIGGRAPH 2008.

[22]  Matthias Zwicker,et al.  Progressive photon mapping: A probabilistic approach , 2011, TOGS.

[23]  Anton Kaplanyan,et al.  Path Space Regularization for Holistic and Robust Light Transport , 2013, Comput. Graph. Forum.

[24]  O. Cappé,et al.  Population Monte Carlo , 2004 .

[25]  Wenzel Jakob,et al.  Light Transport on Path-Space Manifolds , 2013 .

[26]  Alexander Keller,et al.  Instant radiosity , 1997, SIGGRAPH.

[27]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[28]  Jacopo Pantaleoni,et al.  A path space extension for robust light transport simulation , 2012, ACM Trans. Graph..

[29]  A. Sommerfeld,et al.  Anwendung der Vektorrechnung auf die Grundlagen der geometrischen Optik , 1911 .

[30]  Homan Igehy,et al.  Tracing ray differentials , 1999, SIGGRAPH.

[31]  Backward Ray Tracing Backward Ray Tracing , 1986 .

[32]  Peter Shirley,et al.  An Anisotropic Phong BRDF Model , 2000, J. Graphics, GPU, & Game Tools.

[33]  Johannes Hanika,et al.  Spectral light transport simulation using a precision-based ray tracing architecture , 2011 .

[34]  Anton Kaplanyan,et al.  Recent advances in light transport simulation: theory & practice , 2013, SIGGRAPH '13.

[35]  Leonidas J. Guibas,et al.  Metropolis light transport , 1997, SIGGRAPH.

[36]  Jun-Hai Yong,et al.  Eurographics Symposium on Rendering 2011 Improved Stochastic Progressive Photon Mapping with Metropolis Sampling , 2022 .

[37]  Adam Arbree,et al.  Scalable Realistic Rendering with Many‐Light Methods , 2014, Eurographics.

[38]  Toshiya Hachisuka,et al.  Robust adaptive photon tracing using photon path visibility , 2011, TOGS.

[39]  Csaba Kelemen,et al.  Simple and Robust Mutation Strategy for Metropolis Light Transport Algorithm , 2001 .

[40]  Yves D. Willems,et al.  Bi-directional path tracing , 1993 .

[41]  Parris K. Egbert,et al.  Energy redistribution path tracing , 2005, SIGGRAPH 2005.

[42]  K. Bala,et al.  Lightcuts: a scalable approach to illumination , 2005, SIGGRAPH 2005.