Solving the Temporal Knapsack Problem via Recursive Dantzig-Wolfe Reformulation
暂无分享,去创建一个
Alberto Caprara | Fabio Furini | Enrico Malaguti | Emiliano Traversi | Fabio Furini | A. Caprara | E. Malaguti | Emiliano Traversi
[1] Laurence A. Wolsey,et al. Reformulation and Decomposition of Integer Programs , 2009, 50 Years of Integer Programming.
[2] M. Lübbecke. Column Generation , 2010 .
[3] Paul S. Bonsma,et al. A Constant Factor Approximation Algorithm for Unsplittable Flow on Paths , 2011, FOCS.
[4] Yuval Rabani,et al. Improved Approximation Algorithms for Resource Allocation , 2002, IPCO.
[5] S. Martello,et al. Dynamic Programming and Strong Bounds for the 0-1 Knapsack Problem , 1999 .
[6] Alberto Caprara,et al. Uncommon Dantzig-Wolfe Reformulation for the Temporal Knapsack Problem , 2013, INFORMS J. Comput..
[7] Baruch Schieber,et al. A quasi-PTAS for unsplittable flow on line graphs , 2006, STOC '06.
[8] Robert J. Wittrock. Dual nested decomposition of staircase linear programs , 1985 .
[9] Refael Hassin,et al. Allocation of bandwidth and storage , 2002 .
[10] Alan S. Manne,et al. Nested decomposition for dynamic models , 1974, Math. Program..
[11] C. R. Glassey. Nested Decomposition and Multi-Stage Linear Programs , 1973 .
[12] Alberto Ceselli,et al. Automatic Dantzig–Wolfe reformulation of mixed integer programs , 2014, Mathematical Programming.
[13] Esther M. Arkin,et al. Scheduling jobs with fixed start and end times , 1987, Discret. Appl. Math..
[14] Alberto Caprara,et al. Partial Convexification of General MIPs by Dantzig-Wolfe Reformulation , 2011, IPCO.
[15] Fabio Furini,et al. Decomposition and reformulation of integer linear programming problems , 2012, 4OR.
[16] Ulrich Pferschy,et al. Resource allocation with time intervals , 2010, Theor. Comput. Sci..