From Template to Image: Reconstructing Fingerprints from Minutiae Points

Most fingerprint-based biometric systems store the minutiae template of a user in the database. It has been traditionally assumed that the minutiae template of a user does not reveal any information about the original fingerprint. In this paper, we challenge this notion and show that three levels of information about the parent fingerprint can be elicited from the minutiae template alone, viz., 1) the orientation field information, 2) the class or type information, and 3) the friction ridge structure. The orientation estimation algorithm determines the direction of local ridges using the evidence of minutiae triplets. The estimated orientation field, along with the given minutiae distribution, is then used to predict the class of the fingerprint. Finally, the ridge structure of the parent fingerprint is generated using streamlines that are based on the estimated orientation field. Line integral convolution is used to impart texture to the ensuing ridges, resulting in a ridge map resembling the parent fingerprint. The salient feature of this noniterative method to generate ridges is its ability to preserve the minutiae at specified locations in the reconstructed ridge map. Experiments using a commercial fingerprint matcher suggest that the reconstructed ridge structure bears close resemblance to the parent fingerprint

[1]  Edward Richard Henry,et al.  Classification and uses of finger prints , 1928 .

[2]  A. Ganson Fingerprint Classification , 1970, Nature.

[3]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[4]  Barry G. Sherlock,et al.  A model for interpreting fingerprint topology , 1993, Pattern Recognit..

[5]  Brian Cabral,et al.  Imaging vector fields using line integral convolution , 1993, SIGGRAPH.

[6]  Theo van Walsum,et al.  Particle Tracing Algorithms for 3D Curvilinear Grids , 1994, Scientific Visualization.

[7]  Craig I. Watson,et al.  Neural Network Fingerprint Classification , 1994 .

[8]  Anil K. Jain,et al.  Adaptive flow orientation-based feature extraction in fingerprint images , 1995, Pattern Recognit..

[9]  Craig I. Watson,et al.  PCASYS- A Pattern-Level Classification Automation System for Fingerprints | NIST , 1995 .

[10]  Robert K. L. Gay,et al.  Geometric framework for fingerprint image classification , 1997, Pattern Recognit..

[11]  Wilfrid Lefer,et al.  Creating Evenly-Spaced Streamlines of Arbitrary Density , 1997, Visualization in Scientific Computing.

[12]  Anil K. Jain,et al.  Fingerprint Image Enhancement: Algorithm and Performance Evaluation , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Anil K. Jain,et al.  Classification of Fingerprint Images , 1999 .

[14]  Alessandra Lumini,et al.  Fingerprint Classification by Directional Image Partitioning , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Anil K. Jain,et al.  A Multichannel Approach to Fingerprint Classification , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Vivek Verma,et al.  A flow-guided streamline seeding strategy , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[17]  Dario Maio,et al.  Synthetic fingerprint-image generation , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[18]  Kee-Young Yoo,et al.  Core-based fingerprint image classification , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[19]  Andrew W. Senior,et al.  A Combination Fingerprint Classifier , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Chris J. Hill,et al.  Risk of Masquerade Arising from the Storage of Biometrics , 2001 .

[21]  H Moon,et al.  Computational and Performance Aspects of PCA-Based Face-Recognition Algorithms , 2001, Perception.

[22]  Yuan Yao,et al.  Fingerprint Classification with Combinations of Support Vector Machines , 2001, AVBPA.

[23]  Anil K. Jain,et al.  Hierarchical kernel fitting for fingerprint classification and alignment , 2002, Object recognition supported by user interaction for service robots.

[24]  Dario Maio,et al.  Synthetic fingerprint-database generation , 2002, Object recognition supported by user interaction for service robots.

[25]  Aaron Adler,et al.  Can images be regenerated from biometric templates , 2003 .

[26]  Anil K. Jain,et al.  Handbook of Fingerprint Recognition , 2005, Springer Professional Computing.

[27]  Adnan Amin,et al.  Fingerprint classification: a review , 2004, Pattern Analysis and Applications.

[28]  Robert Michael Kirby,et al.  Comparing 2D vector field visualization methods: a user study , 2005, IEEE Transactions on Visualization and Computer Graphics.

[29]  Arun Ross,et al.  Toward reconstructing fingerprints from minutiae points , 2005, SPIE Defense + Commercial Sensing.