The open EEGLAB portal Interface: High-Performance computing with EEGLAB

EEGLAB signal processing environment is currently the leading open-source software for processing electroencephalographic (EEG) data. The Neuroscience Gateway (NSG, nsgportal.org) is a web and API-based portal allowing users to easily run a variety of neuroscience-related software on high-performance computing (HPC) resources in the U.S. XSEDE network. We have reported recently (Delorme et al., 2019) on the Open EEGLAB Portal expansion of the free NSG services to allow the neuroscience community to build and run MATLAB pipelines using the EEGLAB tool environment. We are now releasing an EEGLAB plug-in, nsgportal, that interfaces EEGLAB with NSG directly from within EEGLAB running on MATLAB on any personal lab computer. The plug-in features a flexible MATLAB graphical user interface (GUI) that allows users to easily submit, interact with, and manage NSG jobs, and to retrieve and examine their results. Command line nsgportal tools supporting these GUI functionalities allow EEGLAB users and plug-in tool developers to build largely automated functions and workflows that include optional NSG job submission and processing. Here we present details on nsgportal implementation and documentation, provide user tutorials on example applications, and show sample test results comparing computation times using HPC versus laptop processing.

[1]  Nicholas T. Carnevale,et al.  Introducing The Neuroscience Gateway , 2013, IWSG.

[2]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[3]  Kay A. Robbins,et al.  Hierarchical Event Descriptors (HED): Semi-Structured Tagging for Real-World Events in Large-Scale EEG , 2016, Front. Neuroinform..

[4]  Arnaud Delorme,et al.  EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis , 2004, Journal of Neuroscience Methods.

[5]  Kristofer E. Bouchard,et al.  BIDS-iEEG: an extension to the brain imaging data structure (BIDS) specification for human intracranial electrophysiology , 2018 .

[6]  Nancy Wilkins-Diehr,et al.  TeraGrid Science Gateways and Their Impact on Science , 2008, Computer.

[7]  Pierre Yger,et al.  PyNN: A Common Interface for Neuronal Network Simulators , 2008, Front. Neuroinform..

[8]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[9]  T. Sejnowski,et al.  Dynamic Brain Sources of Visual Evoked Responses , 2002, Science.

[10]  H. Eichenbaum,et al.  Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. , 2010, Journal of neurophysiology.

[11]  Nicholas T. Carnevale,et al.  Early experiences in developing and managing the neuroscience gateway , 2015, Concurr. Comput. Pract. Exp..

[12]  Richard M. Leahy,et al.  Brainstorm: A User-Friendly Application for MEG/EEG Analysis , 2011, Comput. Intell. Neurosci..

[13]  R. Knight,et al.  The functional role of cross-frequency coupling , 2010, Trends in Cognitive Sciences.

[14]  Daniel P. Kennedy,et al.  The Autism Brain Imaging Data Exchange: Towards Large-Scale Evaluation of the Intrinsic Brain Architecture in Autism , 2013, Molecular Psychiatry.

[15]  Carsten H. Wolters,et al.  A parallel algebraic multigrid solver for finite element method based source localization in the human brain , 2002 .

[16]  Yaroslav O. Halchenko,et al.  Neuroscience Runs on GNU/Linux , 2011, Front. Neuroinform..

[17]  N. T. Carnevale,et al.  Translating network models to parallel hardware in NEURON , 2008, Journal of Neuroscience Methods.

[18]  Romain Brette,et al.  The Brian Simulator , 2009, Front. Neurosci..

[19]  P. Elliott,et al.  UK Biobank: An Open Access Resource for Identifying the Causes of a Wide Range of Complex Diseases of Middle and Old Age , 2015, PLoS medicine.

[20]  Christopher M. Reardon,et al.  PoPLAR: Portal for Petascale Lifescience Applications and Research , 2013, BMC Bioinformatics.

[21]  S Makeig,et al.  Blind separation of auditory event-related brain responses into independent components. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Kyungmin Su,et al.  The PREP pipeline: standardized preprocessing for large-scale EEG analysis , 2015, Front. Neuroinform..

[23]  Richard N Henson,et al.  A multi-subject, multi-modal human neuroimaging dataset , 2015, Scientific Data.

[24]  Silvestro Micera,et al.  RELICA: A method for estimating the reliability of independent components , 2014, NeuroImage.

[25]  Tzyy-Ping Jung,et al.  Independent Component Analysis of Electroencephalographic Data , 1995, NIPS.

[26]  Arno Klein,et al.  The Healthy Brain Network Biobank: An open resource for transdiagnostic research in pediatric mental health and learning disorders , 2017 .

[27]  Mark A. Miller,et al.  The CIPRES science gateway: a community resource for phylogenetic analyses , 2011, TG.

[28]  F. L. D. Silva,et al.  Event-related EEG/MEG synchronization and desynchronization: basic principles , 1999, Clinical Neurophysiology.

[29]  Terrence J. Sejnowski,et al.  Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources , 1999, Neural Computation.

[30]  Nicolas Langer,et al.  Automagic: Standardized Preprocessing of Big EEG Data , 2018 .

[31]  James M. Bower,et al.  The Book of GENESIS , 1994, Springer New York.

[32]  Kay A. Robbins,et al.  Preparing Laboratory and Real-World EEG Data for Large-Scale Analysis: A Containerized Approach , 2016, Front. Neuroinform..

[33]  C. Jack,et al.  Ways toward an early diagnosis in Alzheimer’s disease: The Alzheimer’s Disease Neuroimaging Initiative (ADNI) , 2005, Alzheimer's & Dementia.

[34]  Terrence J. Sejnowski,et al.  An Information-Maximization Approach to Blind Separation and Blind Deconvolution , 1995, Neural Computation.

[35]  Steen Moeller,et al.  The Human Connectome Project: A data acquisition perspective , 2012, NeuroImage.

[36]  Christoph M. Michel,et al.  Spatiotemporal Analysis of Multichannel EEG: CARTOOL , 2011, Comput. Intell. Neurosci..

[37]  Arnaud Delorme,et al.  Frontal midline EEG dynamics during working memory , 2005, NeuroImage.

[38]  Scott Makeig,et al.  Measuring transient phase-amplitude coupling using local mutual information , 2019, NeuroImage.

[39]  April R. Levin,et al.  The Harvard Automated Processing Pipeline for Electroencephalography (HAPPE): Standardized Processing Software for Developmental and High-Artifact Data , 2018, Front. Neurosci..

[40]  Mark A. Miller,et al.  Creating the CIPRES Science Gateway for inference of large phylogenetic trees , 2010, 2010 Gateway Computing Environments Workshop (GCE).

[41]  Jonathan Winawer,et al.  iEEG-BIDS, extending the Brain Imaging Data Structure specification to human intracranial electrophysiology , 2019, Scientific Data.

[42]  Scott Makeig,et al.  The Open EEGLAB portal , 2019, 2019 9th International IEEE/EMBS Conference on Neural Engineering (NER).

[43]  Martin Luessi,et al.  MNE software for processing MEG and EEG data , 2014, NeuroImage.

[44]  M Congedo,et al.  A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update , 2018, Journal of neural engineering.

[45]  後藤 薫,et al.  Blind Separation による波源方位測定法 , 1997 .

[46]  Scott Makeig,et al.  Neuroelectromagnetic Forward Head Modeling Toolbox , 2010, Journal of Neuroscience Methods.

[47]  Robert Oostenveld,et al.  MEG-BIDS, the brain imaging data structure extended to magnetoencephalography , 2018, Scientific Data.

[48]  Raamesh Deshpande,et al.  A general biological simulator: the multiscale object oriented simulation environment, MOOSE , 2008, BMC Neuroscience.

[49]  Marc-Oliver Gewaltig,et al.  NEST (NEural Simulation Tool) , 2007, Scholarpedia.

[50]  Zhilin Zhang,et al.  Evolving Signal Processing for Brain–Computer Interfaces , 2012, Proceedings of the IEEE.

[51]  Alan Connelly,et al.  MRtrix: Diffusion tractography in crossing fiber regions , 2012, Int. J. Imaging Syst. Technol..

[52]  Nicholas T. Carnevale,et al.  The Neuroscience Gateway: Enabling Large Scale Modeling and Data Processing in Neuroscience , 2018, PEARC.

[53]  Richard H Scheuermann,et al.  A RESTful API for Access to Phylogenetic Tools via the CIPRES Science Gateway , 2015, Evolutionary bioinformatics online.

[54]  Satrajit S. Ghosh,et al.  The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments , 2016, Scientific Data.

[55]  Robert Oostenveld,et al.  EEG-BIDS, an extension to the brain imaging data structure for electroencephalography , 2019, Scientific Data.

[56]  Satrajit S. Ghosh,et al.  The Healthy Brain Network Serial Scanning Initiative: a resource for evaluating inter-individual differences and their reliabilities across scan conditions and sessions , 2016, bioRxiv.

[57]  James M. Bower,et al.  The book of GENESIS - exploring realistic neural models with the GEneral NEural models SImulation system , 1995 .