Field-effect transistors based on WS2 nanotubes with high current-carrying capacity.

We report the first transistor based on inorganic nanotubes exhibiting mobility values of up to 50 cm(2) V(-1) s(-1) for an individual WS2 nanotube. The current-carrying capacity of these nanotubes was surprisingly high with respect to other low-dimensional materials, with current density at least 2.4 × 10(8) A cm(-2). These results demonstrate that inorganic nanotubes are promising building blocks for high-performance electronic applications.

[1]  S. Mahapatra,et al.  Performance limits of transition metal dichalcogenide (MX2) nanotube surround gate ballistic field effect transistors , 2013 .

[2]  C. Zhi,et al.  Revealing the anomalous tensile properties of WS2 nanotubes by in situ transmission electron microscopy. , 2013, Nano letters.

[3]  Bin Yu,et al.  Schottky-barrier solar cell based on layered semiconductor tungsten disulfide nanofilm , 2012 .

[4]  A. Kis,et al.  Breakdown of high-performance monolayer MoS2 transistors. , 2012, ACS nano.

[5]  J. Gordon,et al.  New high-temperature Pb-catalyzed synthesis of inorganic nanotubes. , 2012, Journal of the American Chemical Society.

[6]  Zhiyong Zhang,et al.  Electrical transport properties of individual WS2 nanotubes and their dependence on water and oxygen absorption , 2012 .

[7]  A. Seabaugh,et al.  First demonstration of two-dimensional WS2 transistors exhibiting 105 room temperature modulation and ambipolar behavior , 2012, 70th Device Research Conference.

[8]  Zhiyong Zhang,et al.  High-performance photodetectors for visible and near-infrared lights based on individual WS2 nanotubes , 2012 .

[9]  A. Seabaugh,et al.  Transistors with chemically synthesized layered semiconductor WS2 exhibiting 105 room temperature modulation and ambipolar behavior , 2012, 1204.0474.

[10]  David Tománek,et al.  Designing electrical contacts to MoS2 monolayers: a computational study. , 2012, Physical review letters.

[11]  Yoshihiro Iwasa,et al.  Ambipolar MoS2 thin flake transistors. , 2012, Nano letters.

[12]  Lev Rapoport,et al.  Controlled doping of MS2 (M=W, Mo) nanotubes and fullerene-like nanoparticles. , 2012, Angewandte Chemie.

[13]  C. Thomsen,et al.  Synthesis of copious amounts of SnS2 and SnS2/SnS nanotubes with ordered superstructures. , 2011, Angewandte Chemie.

[14]  D. Naveh,et al.  Tunable band gaps in bilayer transition-metal dichalcogenides , 2011 .

[15]  R. Tenne,et al.  New Route for Stabilization of 1T-WS2 and MoS2 Phases , 2011, 1110.3848.

[16]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[17]  Sidney R. Cohen,et al.  Experimental, finite element, and density-functional theory study of inorganic nanotube compression , 2011 .

[18]  J. Gordon,et al.  MoS2 hybrid nanostructures: from octahedral to quasi-spherical shells within individual nanoparticles. , 2011, Angewandte Chemie.

[19]  A. Enyashin Theoretical Studies of Inorganic Fullerenes and Fullerene‐Like Nanoparticles , 2010 .

[20]  Sidney R. Cohen,et al.  Nanocompression of individual multilayered polyhedral nanoparticles , 2010, Nanotechnology.

[21]  Matthias Krause,et al.  The MoS2 Nanotubes with Defect-Controlled Electric Properties , 2010, Nanoscale research letters.

[22]  A. Seitsonen,et al.  Atomically precise bottom-up fabrication of graphene nanoribbons , 2010, Nature.

[23]  A. Govindaraj,et al.  Selective generation of single-walled carbon nanotubes with metallic, semiconducting and other unique electronic properties. , 2009, Nanoscale.

[24]  J. Tour,et al.  Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons , 2009, Nature.

[25]  R. Tenne,et al.  Inorganic WS2 nanotubes revealed atom by atom using ultra-high-resolution transmission electron microscopy , 2009 .

[26]  Reshef Tenne,et al.  INSIGHT INTO THE GROWTH MECHANISM OF WS2 NANOTUBES IN THE SCALED-UP FLUIDIZED-BED REACTOR , 2009 .

[27]  G. Amaratunga,et al.  ZnO Nanowire and $\hbox{WS}_{2}$ Nanotube Electronics , 2008, IEEE Transactions on Electron Devices.

[28]  I. Alexandrou,et al.  Phototransistors Utilizing Individual WS2 Nanotubes , 2008, 2008 8th IEEE Conference on Nanotechnology.

[29]  Klaus Müllen,et al.  Two-dimensional graphene nanoribbons. , 2008, Journal of the American Chemical Society.

[30]  H. Dai,et al.  Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors , 2008, Science.

[31]  M. Agarwal,et al.  Transport property measurements in tungsten sulphoselenide single crystals grown by a CVT technique , 2008 .

[32]  A. Bachtold,et al.  Current-induced cleaning of graphene , 2007, 0709.0607.

[33]  Sidney R. Cohen,et al.  On the mechanical behavior of WS2 nanotubes under axial tension and compression. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[34]  P. D. Brown,et al.  Shock-absorbing and failure mechanisms of WS2 and MoS2 nanoparticles with fullerene-like structures under shock wave pressure. , 2005, Journal of the American Chemical Society.

[35]  R. Tenne,et al.  Nanowire acting as a superconducting quantum interference device. , 2005, Physical review letters.

[36]  S. Louie,et al.  Formation and electronic properties of double-walled boron nitride nanotubes , 2005 .

[37]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[38]  M. Nath,et al.  Superconducting NbSe2 nanostructures , 2003 .

[39]  P. Ajayan,et al.  Reliability and current carrying capacity of carbon nanotubes , 2001 .

[40]  C. Dekker,et al.  Carbon Nanotube Single-Electron Transistors at Room Temperature , 2001, Science.

[41]  Charles M. Lieber,et al.  Structural ( n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. , 2001, Physical review letters.

[42]  Cheng,et al.  Polarized raman study of single-wall semiconducting carbon nanotubes , 2000, Physical review letters.

[43]  C. Dekker,et al.  Electrical transport through carbon nanotube junctions created by mechanical manipulation , 2000, cond-mat/0009055.

[44]  Seifert,et al.  Structure and electronic properties of MoS2 nanotubes , 2000, Physical review letters.

[45]  R. Tenne,et al.  Growth of WS2 Nanotubes Phases , 2000 .

[46]  M. Terrones,et al.  On the electronic structure of WS2 nanotubes , 2000 .

[47]  M. Ventra,et al.  Quantized conductance of multiwalled carbon nanotubes , 1999 .

[48]  Dekker,et al.  High-field electrical transport in single-wall carbon nanotubes , 1999, Physical review letters.

[49]  C. Ballif,et al.  Optical and electrical properties of semiconducting WS2 thin films: From macroscopic to local probe measurements , 1999 .

[50]  Thomas Nussbaumer,et al.  Aharonov–Bohm oscillations in carbon nanotubes , 1999, Nature.

[51]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[52]  Zhong Lin Wang,et al.  Carbon nanotube quantum resistors , 1998, Science.

[53]  Reshef Tenne,et al.  Optical-absorption spectra of inorganic fullerenelike MS 2 ÑM5Mo, WÖ , 1998 .

[54]  R. Tenne,et al.  Polyhedral and cylindrical structures of tungsten disulphide , 1992, Nature.

[55]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[56]  J. Wilson,et al.  The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties , 1969 .

[57]  F. Wypych,et al.  1T-MoS2, a new metallic modification of molybdenum disulfide , 1992 .

[58]  E. Bucher Photovoltaic Properties of Solid State Junctions of Layered Semiconductors , 1992 .