Very low temperature epitaxy of Ge and Ge rich SiGe alloys with Ge2H6 in a Reduced Pressure – Chemical Vapour Deposition tool

Abstract We have studied the very low temperature epitaxy of pure Ge and of Ge-rich SiGe alloys in a 200 mm industrial reduced pressure chemical vapour deposition tool. We have, first of all, benchmarked germane (GeH 4 ) and digermane (Ge 2 H 6 ) for the growth of pure Ge. Used Ge 2 H 6 instead of GeH 4 enabled us to dramatically increase the Ge growth rate at temperatures 425 °C and lower (5.6 nm min −1 compared to 0.14 nm min −1 at 350 °C with a Ge 2 H 6 mass-flow one fourth that of GeH 4 ). We have also evaluated at 400 °C, 100 Torr, the impact of the GeH 4 or Ge 2 H 6 mass-flow on the Ge growth rate. For a given Ge atomic flow, the higher surface reactivity of digermane yielded roughly five times higher growth rates than with germane. We have then combined digermane with disilane (Si 2 H 6 ) or dichlorosilane (SiH 2 Cl 2 ) in order to study the GeSi growth kinetics at 475 °C, 100 Torr. While the SiH 2 Cl 2 mass-flow did not have any clear influence on the GeSi growth rate (with a 14 nm min −1 mean value, then), a Si 2 H 6 mass-flow increase resulted in a slight GeSi growth rate increase (from 11 nm min −1 up to 14 nm min −1 ). Significantly higher Ge concentrations were otherwise accessed with dichlorosilane than with disilane, in the 77–82% range compared to the 39–53% range, respectively.

[1]  Jérôme Faist,et al.  Analysis of enhanced light emission from highly strained germanium microbridges , 2013, Nature Photonics.

[2]  J. Hartmann Low temperature growth kinetics of high Ge content SiGe in reduced pressure-chemical vapor deposition , 2007 .

[3]  Improved hole mobilities and thermal stability in a strained‐Si∕strained‐Si1−yGey∕strained‐Si heterostructure grown on a relaxed Si1−xGex buffer , 2005 .

[4]  P. K. Yu,et al.  Kinetics of selective epitaxial deposition of Si1-xGex , 1992 .

[5]  V. Destefanis,et al.  Reduced pressure chemical vapor deposition of Ge thick layers on Si(0 0 1), Si(0 1 1) and Si(1 1 1) , 2008 .

[6]  F. Schäffler,et al.  Stranski-Krastanow growth of tensile strained Si islands on Ge (001) , 2007 .

[7]  J. Hartmann,et al.  A benchmarking of silane, disilane and dichlorosilane for the low temperature growth of group IV layers , 2012 .

[8]  O. Kermarrec,et al.  Enhanced photoluminescence of heavily n-doped germanium , 2009 .

[9]  X. Garros,et al.  High performance 70 nm gate length germanium-on-insulator pMOSFET with high-k/metal gate , 2009 .

[10]  B. Joyce,et al.  Growth dynamics studied by RHEED during Si Ge epitaxy from gaseous hydrides , 1994 .

[11]  J. Hartmann,et al.  Critical thickness for plastic relaxation of SiGe on Si(001) revisited , 2011 .

[12]  J. Michel,et al.  High-performance Ge-on-Si photodetectors , 2010 .

[13]  L. Clavelier,et al.  Epitaxial growth of Ge thick layers on nominal and 6° off Si(0 0 1); Ge surface passivation by Si , 2009 .

[14]  J. Faist,et al.  Lasing in direct-bandgap GeSn alloy grown on Si , 2015, Nature Photonics.

[15]  Hyun-Yong Yu,et al.  p-Channel Ge MOSFET by Selectively Heteroepitaxially Grown Ge on Si , 2009, IEEE Electron Device Letters.

[16]  N. Lee,et al.  B incorporation in Ge(001) grown by gas‐source molecular‐beam epitaxy from Ge2H6 and B2H6 , 1995 .

[17]  Y. Bogumilowicz,et al.  Engineering strained silicon on insulator wafers with the Smart CutTM technology , 2004 .

[18]  Qiming Wang,et al.  GeSn p-i-n photodetector for all telecommunication bands detection. , 2011, Optics express.

[19]  J. Michel,et al.  Ge-on-Si laser operating at room temperature. , 2010, Optics letters.

[20]  J. Hartmann,et al.  Potentialities of disilane for the low temperature epitaxy of intrinsic and boron-doped SiGe , 2014 .

[21]  Laurent Vivien,et al.  Impact of the H2 anneal on the structural and optical properties of thin and thick Ge layers on Si; Low temperature surface passivation of Ge by Si , 2010 .

[22]  J. Werner,et al.  Growth of silicon based germanium tin alloys , 2012 .

[23]  J. Hartmann,et al.  Epitaxial growth of Si and SiGe at temperatures lower than 500 °C with disilane and germane , 2016 .

[24]  N. Lee,et al.  Ge(001) gas‐source molecular beam epitaxy on Ge(001)2×1 and Si(001)2×1 from Ge2H6: Growth kinetics and surface roughening , 1995 .

[25]  O. Richard,et al.  Low-temperature Ge and GeSn Chemical Vapor Deposition using Ge2H6 , 2012 .

[26]  J. M. Fedeli,et al.  Structural, electrical and optical properties of in-situ phosphorous-doped Ge layers , 2012 .

[27]  Isabelle Sagnes,et al.  Tensile-strained germanium microdisks , 2013 .

[28]  P. Fewster Advances in the structural characterisation of semiconductor crystals by X-ray scattering methods , 2004 .

[29]  Laurent Vivien,et al.  Reduced pressure–chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-μm photodetection , 2004 .

[30]  Integration aspects of strained Ge pFETs , 2014, 2013 14th International Conference on Ultimate Integration on Silicon (ULIS).

[31]  Shinichi Takagi,et al.  Fabrication of strained Si on an ultrathin SiGe-on-insulator virtual substrate with a high-Ge fraction , 2001 .