PEMFC Optimization Design Using Genetic Algorithm

* Dept. of Mechanical Engineering, Chonnam Nat’l Univ.** Optika Corporation RD Revised August 1, 2014 ; Accepted August 23, 2014)Key Words: PEMFC(고분자 전해질 연료전지), 3D Model(3차원 모델), GDL(가스 확산층), Genetic Algorithm(유전자 알고리즘), CFD(전산 유체역학)초록: 본 논문은 고분자 전해질 연료전지 해석 방법과 유전자 알고리즘을 결합하여 연료전지 유로 최적화를 이끌어 내는 방법을 연구한다. 종래의 해석 방법은 연료전지를 하나씩 설계하여 해석 결과를 비교하였다. 하지만, 경계조건과 물성치를 설정하는 부분, 메시 작성 작업 등 많은 시간이 소요되며, 정확성 또한 떨어져서 비효율적이다. 본 논문에서 제안하는 유전자 알고리즘을 사용하면 자동으로 채널 구조에 변화를 줄 수 있어서 다양한 크기의 연료지전 해석 결과를 얻을 수 있다. 이는 최적화 과정을 통해 최대 성능의 결과를 알 수 있게 되며, 해석 결과 값에 따라 최적의 채널 구조를 찾을 수 있다.Abstract: This paper presents a method for finding an optimized result by using a genetic algorithm (GA) based on a PEMFC analysis result. The conventional analysis method designs fuel cells one-by-one, and each result is compared to obtain the best performance. Because the computational burden of the conventional analysis is enormous, the present optimization process provides an inefficient tool by automatically setting the boundary and material properties and mesh generation. As the change can be reflected automatically in the channel geometry with GA, the fuel cell analysis result with various sizes can be obtained easily. Therefore, the global maximum performance can be obtained through a GA optimization procedure.

[1]  Suresh G. Advani,et al.  Optimization of polymer electrolyte membrane fuel cell flow channels using a genetic algorithm , 2011 .

[2]  Young-Bae Kim,et al.  Effects of the humidity and the land ratio of channel and rib in the serpentine three‐dimensional PEMFC model , 2013 .

[3]  Koan-Yuh Chang,et al.  The optimal design for PEMFC modeling based on Taguchi method and genetic algorithm neural networks , 2011 .

[4]  Heather McCrabb,et al.  Understanding the effect of channel tolerances on performance of PEMFCs , 2010 .

[5]  Young-Bae Kim,et al.  Numerical investigation on the performance of proton exchange membrane fuel cells with channel position variation , 2012 .

[6]  Zhongying Shi,et al.  A numerical study of flow crossover between adjacent flow channels in a proton exchange membrane fuel cell with serpentine flow field , 2008 .

[7]  Sin-Jo Kang,et al.  Numerical Modeling of Current Density and Water Behavior at a Designated Cross Section of the Gas Diffusion Layer in a Proton Exchange Membrane Fuel Cell , 2012 .

[8]  Dong Sup Lee Optimization of Battery Power Distribution to Improve Fuel Consumption of Fuel Cell Hybrid Vehicle , 2013 .

[9]  Elena Carcadea,et al.  The influence of permeability changes for a 7-serpentine channel pem fuel cell performance , 2011 .

[10]  James Larminie,et al.  Fuel Cell Systems Explained , 2000 .

[11]  Seung Man Baek,et al.  A numerical study on the performance of polymer electrolyte membrane fuel cells due to the variation in gas diffusion layer permeability , 2011 .

[12]  Ay Su,et al.  A three-dimensional full-cell CFD model used to investigate the effects of different flow channel designs on PEMFC performance , 2007 .

[13]  Kauko Leiviskä,et al.  Validation of genetic algorithm results in a fuel cell model , 2010 .

[14]  Young-Bae Kim,et al.  Study on the effect of humidity and stoichiometry on the water saturation of PEM fuel cells , 2012 .

[15]  Dong-Chul Han,et al.  Optimal microchannel design using genetic algorithms , 2009 .