Fixed Low-Order Controllers Achieving Comprehensive Admissibility and H∞ Performance

This paper presents primarily some new parametrizations of all static output-feedback controllers achieving admissibility or $H_{\infty }$ performance for linear time-invariant descriptor systems. The parametrizations in question are in terms of a positive definite matrix and a generalized definite negative matrix and is rooted in the geometry of stable matrices set in state-space case. These parametrizations contribute to explicitly exhibit the whole structure of controllers, with fixed low-order, achieving comprehensive $H_{\infty }$ performance for a descriptor system control design under unstable and non-proper weights. An alternating projections based algorithm is proposed to solve such control design problem. An example is given to illustrate the efficiency of the proposed technique.

[1]  A. Ohara,et al.  Geometric structures of stable state feedback systems , 1993, IEEE Trans. Autom. Control..

[2]  E. Uezato,et al.  Strict LMI conditions for stability, robust stabilization, and H/sub /spl infin// control of descriptor systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[3]  João Yoshiyuki Ishihara,et al.  On the Lyapunov theorem for singular systems , 2002, IEEE Trans. Autom. Control..

[4]  Michio Kono,et al.  Synthesis of servo mechanism problem via H ∞ control , 1992 .

[5]  Masaki Inoue,et al.  State-space H∞ controller design for descriptor systems , 2015, Autom..

[6]  João Yoshiyuki Ishihara,et al.  The full information and state feedback H2 optimal controllers for descriptor systems , 2003, Autom..

[7]  Izumi Masubuchi Output feedback controller synthesis for descriptor systems satisfying closed-loop dissipativity , 2007, Autom..

[8]  Yuanqing Xia,et al.  New bounded real lemma for discrete-time singular systems , 2008, Autom..

[9]  Huibert Kwakernaak,et al.  Robust control and H∞-optimization - Tutorial paper , 1993, Autom..

[10]  Ronald J. Patton,et al.  A Note on Hurwitz Stability of Matrices , 1998, Autom..

[11]  Mattias Fält,et al.  Optimal convergence rates for generalized alternating projections , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[12]  Izumi Masubuchi,et al.  Dissipativity inequalities for continuous-time descriptor systems with applications to synthesis of control gains , 2006, Syst. Control. Lett..

[13]  T. Kailath,et al.  A generalized state-space for singular systems , 1981 .

[14]  D. Cobb,et al.  Descriptor variable systems and optimal state regulation , 1983 .

[15]  Izumi Masubuchi,et al.  PII: S0005-1098(96)00193-8 , 2003 .

[16]  Gary J. Balas,et al.  Robust Control Toolbox™ User's Guide , 2015 .

[17]  Adi Ben-Israel,et al.  Generalized inverses: theory and applications , 1974 .

[18]  N. Higham COMPUTING A NEAREST SYMMETRIC POSITIVE SEMIDEFINITE MATRIX , 1988 .

[19]  Shengyuan Xu,et al.  Robust Control and Filtering of Singular Systems , 2006 .

[20]  Mohamed Yagoubi,et al.  Robust Control of Linear Descriptor Systems , 2017 .

[21]  Gjerrit Meinsma,et al.  Unstable and nonproper weights in H∞ control , 1995, Autom..