Strengths and Limitations of the Wavelet Spectrum Method in the Analysis of Internet Traffic

The fluctuations of Internet traffic possess an intricate structure which cannot be simply explained by long-range dependence and self-similarity. In this work, we explore the use of the wavelet spectrum, whose slope is commonly used to estimate the Hurst parameter of long-range dependence. We show that much more than simple slope estimates are needed for detecting important traffic features. In particular, the multi-scale nature of the traffic does not admit simple description of the type attempted by the Hurst parameter. We also demonstrate some practical limitations of the wavelet spectrum. We explore the causes of these limitations using simulated data. This analysis leads us to a better understanding of a number of challenging phenomena observed in real network traffic.

[1]  Patrick Flandrin,et al.  Time-Frequency/Time-Scale Analysis , 1998 .

[2]  O. Rioul,et al.  Wavelets and signal processing , 1991, IEEE Signal Processing Magazine.

[3]  Jelena Kovacevic,et al.  Wavelets and Subband Coding , 2013, Prentice Hall Signal Processing Series.

[4]  Jean-Marc Bardet,et al.  Wavelet Estimator of Long-Range Dependent Processes , 2000 .

[5]  Patrice Abry,et al.  Wavelet Analysis of Long-Range-Dependent Traffic , 1998, IEEE Trans. Inf. Theory.

[6]  P. Robinson Gaussian Semiparametric Estimation of Long Range Dependence , 1995 .

[7]  Patrice Abry,et al.  A Wavelet-Based Joint Estimator of the Parameters of Long-Range Dependence , 1999, IEEE Trans. Inf. Theory.

[8]  A. Cohen Numerical Analysis of Wavelet Methods , 2003 .

[9]  Patrice Abry,et al.  Meaningful MRA initialization for discrete time series , 2000, Signal Process..

[10]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Zhi-Li Zhang,et al.  Small-time scaling behaviors of Internet backbone traffic: an empirical study , 2003, IEEE INFOCOM 2003. Twenty-second Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No.03CH37428).

[12]  Sujit K. Ghosh,et al.  Essential Wavelets for Statistical Applications and Data Analysis , 2001, Technometrics.

[13]  Jean-Marc Bardet,et al.  Statistical study of the wavelet analysis of fractional Brownian motion , 2002, IEEE Trans. Inf. Theory.

[14]  Vladas Pipiras,et al.  Estimation of the self-similarity parameter in linear fractional stable motion , 2002, Signal Process..

[15]  A.H. Tewfik,et al.  Correlation structure of the discrete wavelet coefficients of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[16]  Nouna Kettaneh,et al.  Statistical Modeling by Wavelets , 1999, Technometrics.

[17]  Murad S. Taqqu,et al.  Theory and applications of long-range dependence , 2003 .

[18]  S. Mallat A wavelet tour of signal processing , 1998 .

[19]  Murad S. Taqqu,et al.  Robustness of whittle-type estimators for time series with long-range dependence , 1997 .

[20]  M. Taqqu,et al.  ON THE AUTOMATIC SELECTION OF THE ONSET OF SCALING , 2003 .

[21]  Murad S. Taqqu,et al.  Semi-parametric estimation of the long-range dependence parameter : A survey , 2003 .

[22]  Sally Floyd,et al.  Wide-area traffic: the failure of Poisson modeling , 1994 .

[23]  Murad S. Taqqu,et al.  On estimating the intensity of long-range dependence in finite and infinite variance time series , 1998 .

[24]  Walter Willinger,et al.  On the Self-Similar Nature of Ethernet Traffic ( extended version ) , 1995 .

[25]  J. S. Marron,et al.  LASS: a tool for the local analysis of self-similarity , 2006, Comput. Stat. Data Anal..

[26]  Jin Cao,et al.  Internet Traffic Tends Toward Poisson and Independent as the Load Increases , 2003 .