The Interplay of Indicator, Support and Analyte in Optical Sensor Layers

It has been recognized since the pioneering times of fiber-optic sensing development that the best indicator dye is worth nothing without a (polymer) support fitted to both the determinand species and the indicator itself. However, the task of selecting an organic or inorganic polymer for manufacturing a sensitive head among the myriad of materials available nowadays may seem daunting to the researcher or technologist. Moreover, if we also incorporate a biological recognition element to develop an ultrasensitive or specific biosensor, the multifaceted problem appears even more puzzling. This chapters aims to guide the reader through the current world of both organic and inorganic materials and their effect on (bio)chemical sensing. Selected examples illustrate the diversity of solid supports and composites and their effect on the indicator response, photostability, interaction with the analyte, stability of the different biological elements, and ease of preparation, among other factors, shedding some light on the complex interaction between the key components of chemical sensors and biosensors.

[1]  P. Angenendt,et al.  Protein and antibody microarray technology. , 2003, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[2]  Dieter Stoll,et al.  Protein microarray technology. , 2002, Frontiers in bioscience : a journal and virtual library.

[3]  Colette McDonagh,et al.  Optimization of Ormosil Films for Optical Sensor Applications , 1998 .

[4]  L. Chau,et al.  Sol-gel encapsulation of lactate dehydrogenase for optical sensing of L-lactate. , 2002, Biosensors & bioelectronics.

[5]  D. Walt,et al.  High-density, microsphere-based fiber optic DNA microarrays. , 2003, Biosensors & bioelectronics.

[6]  M. Karve,et al.  A disposable optrode using immobilized tyrosinase films. , 2001, Analytical biochemistry.

[7]  Ingo Klimant,et al.  Novel oxygen sensor material based on a ruthenium bipyridyl complex encapsulated in zeolite Y: dramatic differences in the efficiency of luminescence quenching by oxygen on going from surface-adsorbed to zeolite-encapsulated fluorophores , 1995 .

[8]  Valérie Pichon,et al.  Immuno-based sample preparation for trace analysis. , 2003, Journal of chromatography. A.

[9]  Paul Hartmann,et al.  Photobleaching of a ruthenium complex in polymers used for oxygen optodes and its inhibition by singlet oxygen quenchers , 1998 .

[10]  Eliora Z Ron,et al.  Optical imaging fiber-based live bacterial cell array biosensor. , 2003, Analytical biochemistry.

[11]  Claude Durrieu,et al.  Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. , 2003, Biosensors & bioelectronics.

[12]  Zeev Rosenzweig,et al.  A fiber optic sensor for rapid analysis of bilirubin in serum , 1997 .

[13]  Raymond T. Bailey,et al.  A composite sol–gel/fluoropolymer matrix for dissolved oxygen optical sensing , 2004 .

[14]  Martin M. F. Choi Progress in Enzyme-Based Biosensors Using Optical Transducers , 2004 .

[15]  Kadriye Ertekin,et al.  Fluorescence emission studies of an azlactone derivative embedded in polymer films: An optical sensor for pH measurements , 2000 .

[16]  N. Brown,et al.  Chromate reduction by Microbacterium liquefaciens immobilised in polyvinyl alcohol , 2004, Biotechnology Letters.

[17]  K. Seiler,et al.  Principles and mechanisms of ion-selective optodes☆ , 1992 .

[18]  P. Predki Functional protein microarrays: ripe for discovery. , 2004, Current opinion in chemical biology.

[19]  W. Schwieger,et al.  Porous glasses in the 21st century––a short review , 2003 .

[20]  D. Walt,et al.  A fiber-optic microarray biosensor using aptamers as receptors. , 2000, Analytical biochemistry.

[21]  Andrew Mills,et al.  Controlling the sensitivity of optical oxygen sensors , 1998 .

[22]  N. Turro,et al.  PHOTOINDUCED ELECTRON TRANSFER QUENCHING OF EXCITED Ru(II) POLYPYRIDYLS BOUND TO DNA: THE ROLE OF THE NUCLEIC ACID DOUBLE HELIX , 1991, Photochemistry and photobiology.

[23]  M. Philbert,et al.  Fluorescent nanosensors for intracellular chemical analysis: decyl methacrylate liquid polymer matrix and ion-exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells. , 2001, Analytical chemistry.

[24]  A. Mills Effect of plasticizer viscosity on the sensitivity of an [Ru(bpy)32+(Ph4B–)2]-based optical oxygen sensor , 1998 .

[25]  D. Rawson,et al.  Whole cell biosensors--electrochemical and optical approaches to ecotoxicity testing. , 2001, Toxicology in vitro : an international journal published in association with BIBRA.

[26]  J. Mo,et al.  Spline wavelet multi-resolution analysis for high-noise digital signal processing in ultraviolet–visible spectrophotometry , 1996 .

[27]  T. Miyashita,et al.  Novel optical oxygen sensing material: platinum octaethylporphyrin immobilized in a copolymer film of isobutyl methacrylate and tetrafluoropropyl methacrylate , 2001 .

[28]  M. Bossi,et al.  Luminescence quenching of Ru(II) complexes in polydimethylsiloxane sensors for oxygen , 1999 .

[29]  T. Meyer,et al.  Molecular Energy Transfer across Oxide Surfaces , 2001 .

[30]  M. Moreno-Bondi,et al.  Humidity sensing with a luminescent Ru(II) complex and phase-sensitive detection , 2006 .

[31]  F. Dörwald Organic Synthesis on Solid Phase , 2002 .

[32]  A. Sanz-Medel,et al.  Air moisture sensing materials based on the room temperature phosphorescence quenching of immobilized mercurochrome , 2000 .

[33]  J. Wright,et al.  Effects of matrix variations on pH and Cu2+ sensing properties of sol-gel entrapped Eriochrome Cyanine R , 2004 .

[34]  David R. Walt,et al.  Fluorescence-based nucleic acid detection and microarrays , 2002 .

[35]  E. Benito-Peña,et al.  FUNDAMENTALS OF ENZYME-BASED SENSORS , 2006 .

[36]  F. Dörwald Supports for Solid‐Phase Organic Synthesis , 2003 .

[37]  S. Saavedra,et al.  Dye leaching from a doped sol–gel is eliminated by conjugation to a dendrimer , 2001 .

[38]  Ivana Murković Steinberg,et al.  Characterisation of an optical sensor membrane based on the metal ion indicator Pyrocatechol Violet , 2003 .

[39]  S. G. Krivoshlykov,et al.  Rational design of a Nile Red/polymer composite film for fluorescence sensing of organophosphonate vapors using hydrogen bond acidic polymers. , 2001, Analytical chemistry.

[40]  Quenching of ketone phosphorescence by molecular oxygen at the gas/solid interface , 1997 .

[41]  M. Firer,et al.  The solid phase in affinity chromatography: strategies for antibody attachment. , 2001, Journal of biochemical and biophysical methods.

[42]  Ashok Kumar,et al.  Biomolecules for development of biosensors and their applications , 2003 .

[43]  G. Schottner Hybrid Sol−Gel-Derived Polymers: Applications of Multifunctional Materials , 2001 .

[44]  M. Snyder,et al.  Protein chip technology. , 2003, Current opinion in chemical biology.

[45]  G. Hermanson,et al.  Immobilized Affinity Ligand Techniques , 1992 .

[46]  P. Peluso,et al.  Optimizing antibody immobilization strategies for the construction of protein microarrays. , 2003, Analytical biochemistry.

[47]  N. Turro,et al.  Photoinduced electron-transfer reactions to probe the structure of starburst dendrimers , 1990 .

[48]  Andrea A. Mencaglia,et al.  Polymer-coated optical fibres for application in a direct evanescent wave immunoassay , 2000 .

[49]  T. Vo‐Dinh,et al.  Application of an Antibody Biochip for p53 Detection and Cancer Diagnosis , 2001, Biotechnology progress.

[50]  David R Walt,et al.  Optical imaging fiber-based single live cell arrays: a high-density cell assay platform. , 2002, Analytical chemistry.

[51]  M Ensor,et al.  Bacterial biosensors for monitoring toxic metals. , 1997, Trends in biotechnology.

[52]  Rosaria Ciriminna,et al.  High-performance quenchometric oxygen sensors based on fluorinated xerogels doped with [Ru(dpp)3]2+. , 2005, Analytical chemistry.

[53]  A. Mills,et al.  Chemical influences on the luminescence of ruthenium diimine complexes and its response to oxygen , 1997 .

[54]  J. Castillo,et al.  Characterization of a urea optical sensor based on polypyrrole , 1999 .

[55]  D. Leckband,et al.  A quantitative assessment of heterogeneity for surface-immobilized proteins. , 2001, Analytical chemistry.

[56]  J. Demas,et al.  Oxygen sensors based on luminescence quenching: interactions of metal complexes with the polymer supports. , 1994, Analytical chemistry.

[57]  O. Wolfbeis,et al.  Optical sensors: industrial environmental and diagnostic applications , 2004 .

[58]  I. Hołowacz,et al.  Optical properties of sol–gel coatings for fiberoptic sensors , 2002 .

[59]  G. S. Wilson,et al.  Electrochemical Biosensors: Recommended Definitions and Classification , 1999, Biosensors & bioelectronics.

[60]  Reinhard Renneberg,et al.  Encapsulation of glucose oxidase microparticles within a nanoscale layer-by-layer film: immobilization and biosensor applications. , 2003, Biosensors & bioelectronics.

[61]  T. Vo‐Dinh,et al.  Biosensors and biochips: advances in biological and medical diagnostics , 2000, Fresenius' journal of analytical chemistry.

[62]  Ulrich J. Krull,et al.  Direct selective detection of genomic DNA from coliform using a fiber optic biosensor , 2002 .

[63]  J. Lakowicz Principles of fluorescence spectroscopy , 1983 .

[64]  Hartmann Photochemically induced energy-transfer effects on the decay times of ruthenium complexes in polymers , 2000, Analytical chemistry.

[65]  O. Wolfbeis,et al.  Engineered Bacteria Based Biosensors for Monitoring Bioavailable Heavy Metals , 2002 .

[66]  Kit S. Lam,et al.  Protein and Chemical Microarrays—Powerful Tools for Proteomics , 2003, Journal of biomedicine & biotechnology.

[67]  J. Demas,et al.  Oxygen Sensors Based on Luminescence Quenching: Interactions of Tris(4,7-diphenyl-1,10-phenanthroline)ruthenium(II) Chloride and Pyrene with Polymer Supports , 1997 .

[68]  J. Barrero-Moreno,et al.  Sol–gel glass doped with isoproturon antibody as selective support for the development of a flow-through fluoroimmunosensor , 2001 .

[69]  Soo‐Hyoung Lee,et al.  Thin Film Optical Sensors Employing Polyelectrolyte Assembly , 2000 .

[70]  Andrew Gilbert,et al.  Essentials of Molecular Photochemistry , 1991 .

[71]  A. N. Díaz,et al.  Enhanced chemiluminescence biosensor for the determination of phenolic compounds and hydrogen peroxide , 2001 .

[72]  D. Wöhrle,et al.  Chromophores in porous silicas and minerals: preparation and optical properties , 2002 .

[73]  Xiao-ru Wang,et al.  Fluorescent response of sol-gel derived ormosils for optical ammonia sensing film , 2004 .

[74]  S. Bang,et al.  Covalent binding of genetically engineered microorganisms to porous glass beads , 2002 .

[75]  James N. Demas,et al.  Excited State Lifetime Measurements , 1983 .

[76]  Ruey-an Doong,et al.  Immobilization and characterization of sol–gel-encapsulated acetylcholinesterase fiber-optic biosensor , 2001 .

[77]  Bruce D. Hammock,et al.  Disc-based immunoassay microarrays , 2000 .

[78]  Patrick S. Grant,et al.  Development of multilayer fluorescent thin film chemical sensors using electrostatic self-assembly , 2003 .

[79]  V. Sakanyan High-throughput and multiplexed protein array technology: protein-DNA and protein-protein interactions. , 2005, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[80]  Mitchell A. Winnik,et al.  Luminescence Quenching in Polymer/Filler Nanocomposite Films Used in Oxygen Sensors , 2001 .

[81]  Chris W. Brown,et al.  Sol-gel glass as a matrix for chemical and biochemical sensing , 1997 .

[82]  V. Vasil’ev,et al.  New Optical Sensors for Oxygen Based on Phosphorescent Cationic Water-Soluble Pd(II), Pt(II), and Rh(III) Porphyrins , 2004 .

[83]  N. V. Avseenko,et al.  Immunoassay with multicomponent protein microarrays fabricated by electrospray deposition. , 2002, Analytical chemistry.

[84]  J. Leclerc,et al.  Fiber optic biosensor using Chlorella vulgaris for determination of toxic compounds. , 2000, Ecotoxicology and environmental safety.

[85]  D. Sherrington,et al.  Polymer-supported reactions in organic synthesis , 1980 .

[86]  Joseph Klafter,et al.  Molecular dynamics in restricted geometries , 1989 .

[87]  Shimshon Belkin,et al.  Bioluminescent whole cell optical fiber sensor to genotoxicants: system optimization , 2001 .

[88]  J. Weiner,et al.  Fundamentals and applications , 2003 .

[89]  K Liefeith,et al.  Fiber-optic luminescent sensors with composite oxygen-sensitive layers and anti-biofouling coatings. , 2001, Analytical chemistry.

[90]  G. Gil,et al.  Enhancement in the sensitivity of a gas biosensor by using an advanced immobilization of a recombinant bioluminescent bacterium. , 2002, Biosensors & bioelectronics.

[91]  Frances S. Ligler,et al.  Immobilized biomolecules in analysis : a practical approach , 1998 .

[92]  W. Bare,et al.  Photostability of luminescent ruthenium(II) complexes in polymers and in solution. , 2003, Analytical chemistry.

[93]  R. Pansu,et al.  Polyaromatic Luminescent Nanocrystals for Chemical and Biological Sensors , 2004 .

[94]  D R Walt,et al.  A fiber-optic lactate sensor based on bacterial cytoplasmic membranes. , 2001, Biosensors & bioelectronics.

[95]  P. Carr,et al.  Immobilized Enzymes in Analytical and Clinical Chemistry: Fundamentals and Applications , 1980 .

[96]  María Marazuela,et al.  Fiber-optic biosensors – an overview , 2002, Analytical and bioanalytical chemistry.

[97]  Vollmann Seeligmann‐Zieke, Handbuch der Lack‐ und Firnißindustrie. III. Auflage. herausgegeben von E. Zieke und Dr. H. Wolff, mitbearbeitet von W. Schick und Dr. Zimmer. Berlin 1923. Union, Deutsche Verlagsgesellschaft. 827 Seiten , 1924 .

[98]  L. Blum,et al.  An electrochemiluminescence-based fibre optic biosensor for choline flow injection analysis. , 2000, The Analyst.

[99]  B. Trimmer,et al.  Combined imaging and chemical sensing of l-glutamate release from the foregut plexus of the Lepidopteran, Manduca sexta , 2002, Journal of Neuroscience Methods.

[100]  J. Treadway,et al.  Ruthenium(II) MLCT Excited States. Stabilization toward Ligand Loss in Rigid Media. , 1998, Inorganic chemistry.

[101]  Bo Xu,et al.  Electrochemiluminescent determination of glucose with a sol–gel derived ceramic–carbon composite electrode as a renewable optical fiber biosensor , 2002 .

[102]  Guillermo Orellana,et al.  FLUORESCENCE-BASED SENSORS , 2006 .

[103]  Colette McDonagh,et al.  Enhanced Fluorescence Sensing Using Sol-Gel Materials , 2002, Journal of Fluorescence.

[104]  Kemin Wang,et al.  Ultrasensitive Optical DNA Biosensor Based on Surface Immobilization of Molecular Beacon by a Bridge Structure , 2001, Analytical sciences : the international journal of the Japan Society for Analytical Chemistry.

[105]  Guillermo Orellana,et al.  Oxygen-sensitive layers for optical fibre devices , 1995 .

[106]  G. Orellana,et al.  Hydrocarbon in water sensing with PTFE membranes doped with a luminescent Ru(II) poly(pyridyl) complex , 2005 .

[107]  G. Orellana,et al.  Luminescent Nafion Membranes Dyed with Ruthenium(II) Complexes as Sensing Materials for Dissolved Oxygen , 1999 .

[108]  P Vadgama,et al.  Analytical aspects of biosensors , 2000, Annals of clinical biochemistry.

[109]  J. Brennan,et al.  Fluorescent Probes as Reporters on the Local Structure and Dynamics in Sol−Gel-Derived Nanocomposite Materials , 2001 .

[110]  Guillermo Orellana,et al.  Oxygen sensing in nonaqueous media using porous glass with covalently bound luminescent Ru(II) complexes , 1998 .

[111]  Jeong-Woo Choi,et al.  Optical biosensor consisting of glutathione-S-transferase for detection of captan. , 2003, Biosensors & bioelectronics.

[112]  R. Golbik,et al.  Protein adsorption and leakage in carrier–enzyme systems , 1991, Biotechnology and bioengineering.

[113]  Peter W. Carr,et al.  Immobilized Enzymes in Analytical and Clinical Chemistry: Fundamentals and Applications , 1980 .

[114]  Renata Reisfeld,et al.  Sol-gels and chemical sensors , 1996 .

[115]  Ramaier Narayanaswamy,et al.  Polymeric films in optical gas sensors , 1998 .

[116]  S. Schuster,et al.  Molecular beacons for DNA biosensors with micrometer to submicrometer dimensions. , 2000, Analytical biochemistry.

[117]  R. Johnson,et al.  Ionophore-based ion-selective potentiometric and optical sensors , 2003, Analytical and bioanalytical chemistry.