Switching on efficient photocatalytic water oxidation reactions over CaNbO2N by Mg modifications under visible light illumination

[1]  R. Köferstein Photocatalytic activity of CaTaO2N nanocrystals obtained from a hydrothermally synthesized oxide precursor , 2019 .

[2]  Guan Zhang,et al.  Activating BaTaO2N by Ca modifications and cobalt oxide for visible light photocatalytic water oxidation reactions , 2018, Applied Catalysis B: Environmental.

[3]  Xiaoxiang Xu,et al.  Boosting photocatalytic water oxidation reactions over strontium tantalum oxynitride by structural laminations , 2018, Applied Catalysis B: Environmental.

[4]  Xiaoxiang Xu,et al.  Defect management and efficient photocatalytic water oxidation reaction over Mg modified SrNbO2N , 2018 .

[5]  K. Fujii,et al.  Undoped Layered Perovskite Oxynitride Li2LaTa2O6N for Photocatalytic CO2 Reduction with Visible Light , 2018, Angewandte Chemie.

[6]  Y. Mi,et al.  Activating Layered Perovskite Compound Sr2TiO4 via La/N Codoping for Visible Light Photocatalytic Water Splitting , 2018 .

[7]  Y. Mi,et al.  Ruddlesden-Popper compound Sr2TiO4 co-doped with La and Fe for efficient photocatalytic hydrogen production , 2018 .

[8]  K. Maeda CO2 reduction using oxynitrides and nitrides under visible light , 2017, Progress in Solid State Chemistry.

[9]  Y. Mi,et al.  Ultrathin Lanthanum Tantalate Perovskite Nanosheets Modified by Nitrogen Doping for Efficient Photocatalytic Water Splitting. , 2017, ACS nano.

[10]  Xiaoxiang Xu,et al.  Actualizing efficient photocatalytic water oxidation over SrTaO2N by Na modification , 2017 .

[11]  K. Domen,et al.  NH3-assisted chloride flux-coating method for direct fabrication of visible-light-responsive SrNbO2N crystal layers , 2017 .

[12]  J. Dai,et al.  Influence of oxygen vacancy on electric structure and optical properties of pure and N-doped Sr2M2O7(M = Nb, Ta) , 2017 .

[13]  Xiaoxiang Xu,et al.  Efficient photocatalytic oxygen production over Ca-modified LaTiO2N , 2017 .

[14]  Xiaoxiang Xu,et al.  Zr-Doped Mesoporous Ta3N5 Microspheres for Efficient Photocatalytic Water Oxidation. , 2016, ACS applied materials & interfaces.

[15]  Lianzhou Wang,et al.  Inorganic perovskite photocatalysts for solar energy utilization. , 2016, Chemical Society reviews.

[16]  K. Domen,et al.  Photocatalyst Sheets Composed of Particulate LaMg1/3Ta2/3O2N and Mo-Doped BiVO4 for Z-Scheme Water Splitting under Visible Light , 2016 .

[17]  Xiaoxiang Xu,et al.  Role of Oxygen Defects on the Photocatalytic Properties of Mg-Doped Mesoporous Ta3 N5. , 2016, ChemSusChem.

[18]  Guo Xinxin,et al.  A review of metal oxynitrides for photocatalysis , 2016 .

[19]  F. Oehler,et al.  Photocatalytic properties of CoOx-loaded nano-crystalline perovskite oxynitrides ABO2N (A = Ca, Sr, Ba, La; B = Nb, Ta) , 2016 .

[20]  Hui‐Ming Cheng,et al.  Tantalum (oxy)nitride based photoanodes for solar-driven water oxidation , 2016 .

[21]  Xiaoxiang Xu,et al.  Efficient Photocatalytic Oxygen Production over Nitrogen‐Doped Sr4Nb2O9 under Visible‐Light Irradiation , 2016 .

[22]  S. Kikkawa,et al.  Direct synthesis of nearly single-phase BaTaO2N and CaTaO2N powders , 2015 .

[23]  J. Hazemann,et al.  Establishing Efficient Cobalt-Based Catalytic Sites for Oxygen Evolution on a Ta3N5 Photocatalyst , 2015 .

[24]  Xiaoxiang Xu,et al.  Photocatalytic Hydrogen Production over Chromium Doped Layered Perovskite Sr2TiO4. , 2015, Inorganic chemistry.

[25]  Kazuhiko Maeda,et al.  Selective Formic Acid Production via CO2 Reduction with Visible Light Using a Hybrid of a Perovskite Tantalum Oxynitride and a Binuclear Ruthenium(II) Complex. , 2015, ACS applied materials & interfaces.

[26]  M. Kakihana,et al.  Photocatalytic water oxidation under visible light by valence band controlled oxynitride solid solutions LaTaON2–SrTiO3 , 2015 .

[27]  T. Taniguchi,et al.  High pressure densification and dielectric properties of perovskite-type oxynitride SrTaO2N , 2015 .

[28]  Can Li,et al.  Interface engineering of a CoO(x)/Ta3N5 photocatalyst for unprecedented water oxidation performance under visible-light-irradiation. , 2015, Angewandte Chemie.

[29]  K. Domen,et al.  A complex perovskite-type oxynitride: the first photocatalyst for water splitting operable at up to 600 nm. , 2015, Angewandte Chemie.

[30]  A. Bard,et al.  Enhanced photoelectrochemical water oxidation on bismuth vanadate by electrodeposition of amorphous titanium dioxide. , 2014, Journal of the American Chemical Society.

[31]  M. Jaroniec,et al.  All‐Solid‐State Z‐Scheme Photocatalytic Systems , 2014, Advanced materials.

[32]  Tao Yu,et al.  Highly Photo‐Responsive LaTiO2N Photoanodes by Improvement of Charge Carrier Transport among Film Particles , 2014 .

[33]  Li Zhang,et al.  Photoelectrochemical water oxidation of LaTaON2 under visible-light irradiation , 2014 .

[34]  R. Riedel,et al.  Sinterability of the oxynitride LaTiO2N with perovskite-type structure , 2014 .

[35]  K. Domen,et al.  Enhancing photocatalytic activity of LaTiO2N by removal of surface reconstruction layer. , 2014, Nano letters.

[36]  J. Attfield,et al.  Thermally Robust Anion-Chain Order in Oxynitride Perovskites , 2013 .

[37]  Shuji Oishi,et al.  Flux growth of Sr2Ta2O7 crystals and subsequent nitridation to form SrTaO2N crystals , 2013 .

[38]  Leonard J. Brillson,et al.  Electronic Structure of Tantalum Oxynitride Perovskite Photocatalysts , 2013 .

[39]  Weidong Shi,et al.  Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. , 2013, Chemical Society reviews.

[40]  M. Kakihana,et al.  Control of valence band potential and photocatalytic properties of NaxLa1−xTaO1+2xN2−2x oxynitride solid solutions , 2013 .

[41]  Kazuhiko Maeda,et al.  Preparation of calcium tantalum oxynitride from layered oxide precursors to improve photocatalytic activity for hydrogen evolution under visible light , 2012 .

[42]  K. Domen,et al.  Water oxidation using a particulate BaZrO3-BaTaO2N solid-solution photocatalyst that operates under a wide range of visible light. , 2012, Angewandte Chemie.

[43]  Tao Yu,et al.  Co3O4 Nanoparticles as Robust Water Oxidation Catalysts Towards Remarkably Enhanced Photostability of a Ta3N5 Photoanode , 2012 .

[44]  Xiaoxiang Xu,et al.  A red metallic oxide photocatalyst. , 2012, Nature materials.

[45]  S. Pilgrim,et al.  Synthesis of BaTaO2N Powders Utilizing NH3 Decomposition , 2011 .

[46]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[47]  C. Rao,et al.  Rare earth niobium oxynitrides, LnNbON2−δ (Ln = Y, La, Pr, Nd, Gd, Dy): Synthesis, structure and properties , 2011 .

[48]  K. Domen,et al.  SrNbO2N as a water-splitting photoanode with a wide visible-light absorption band. , 2011, Journal of the American Chemical Society.

[49]  K. Domen,et al.  Synthesis and photocatalytic activity of perovskite niobium oxynitrides with wide visible-light absorption bands. , 2011, ChemSusChem.

[50]  Xiaobo Chen,et al.  Semiconductor-based photocatalytic hydrogen generation. , 2010, Chemical reviews.

[51]  P. Woodward,et al.  Cation ordering in perovskites , 2010 .

[52]  Benjamin H. Meekins,et al.  Got TiO2 nanotubes? Lithium ion intercalation can boost their photoelectrochemical performance. , 2009, ACS nano.

[53]  A. Weidenkaff,et al.  Thermal oxidation of oxynitride perovskites in different atmospheres , 2008 .

[54]  T. Van Voorhis,et al.  Electronic design criteria for O-O bond formation via metal-oxo complexes. , 2008, Inorganic chemistry.

[55]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[56]  Yunfeng Lu,et al.  Mesoporous titania spheres with tunable chamber stucture and enhanced photocatalytic activity. , 2007, Journal of the American Chemical Society.

[57]  Scott W. Donne,et al.  Flat-Band Potential of a Semiconductor: Using the Mott Schottky Equation. , 2007 .

[58]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[59]  Anke Weidenkaff,et al.  Tantalum and niobium perovskite oxynitrides: Synthesis and analysis of the thermal behaviour , 2005 .

[60]  K. Domen,et al.  Recent progress of visible-light-driven heterogeneous photocatalysts for overall water splitting , 2004 .

[61]  C. Tai,et al.  Characterization of the Structural, Optical, and Dielectric Properties of Oxynitride Perovskites AMO2N (A = Ba, Sr, Ca; M = Ta, Nb) , 2004 .

[62]  I. Lin,et al.  Correlation of microwave dielectric properties and normal vibration modes of xBa(Mg1/3Ta2/3)O3-(1-x)Ba(Mg1/3Nb2/3)O3 ceramics: II. Infrared spectroscopy , 2003 .

[63]  Juan Bisquert,et al.  Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[64]  K. Domen,et al.  Oxy)nitrides as New Photocatalysts for Water Splitting under Visible Light Irradiation , 2002 .

[65]  Hironori Arakawa,et al.  Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst , 2001, Nature.

[66]  Sugiyama,et al.  Photoelectron spectroscopic study of SrxNbO3. , 1994, Physical review. B, Condensed matter.

[67]  J. Halbritter,et al.  Angle-resolved XPS studies of oxides at NbN, NbC, and Nb surfaces , 1987 .

[68]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[69]  Hong Zhang,et al.  A novel synthesis of hierarchical porous carbons from interpenetrating polymer networks for high performance supercapacitor electrodes , 2017 .

[70]  A. Wokaun,et al.  Investigating the behavior of various cocatalysts on LaTaON2 photoanode for visible light water splitting. , 2016, Physical chemistry chemical physics : PCCP.

[71]  M. Jaroniec,et al.  Hierarchical photocatalysts. , 2016, Chemical Society reviews.

[72]  K. Domen,et al.  Photocatalytic overall water splitting on the perovskite-type transition metal oxynitride CaTaO2N under visible light irradiation. , 2015, Chemical communications.

[73]  A. Kudo,et al.  Heterogeneous photocatalyst materials for water splitting. , 2009, Chemical Society reviews.

[74]  M. Grätzel Photoelectrochemical cells : Materials for clean energy , 2001 .

[75]  Michael Grätzel,et al.  Photoelectrochemical cells , 2001, Nature.

[76]  J. Grins,et al.  Phases in the ZrxTa1 –x(O,N)y system, formed by ammonolysis of Zr–Ta gels: preparation of a baddeleyite-type solid solution phase ZrxTa1 –xO1 +xN1 –x, 0≤X≤1 , 1994 .