Random Geometric Complexes and Graphs on Riemannian Manifolds in the Thermodynamic Limit

We investigate some topological properties of random geometric complexes and random geometric graphs on Riemannian manifolds in the thermodynamic limit. In particular, for random geometric complexes we prove that the normalized counting measure of connected components, counted according to isotopy type, converges in probability to a deterministic measure. More generally, we also prove similar convergence results for the counting measure of types of components of each $k$-skeleton of a random geometric complex. As a consequence, in the case of the $1$-skeleton (i.e. for random geometric graphs) we show that the empirical spectral measure associated to the normalized Laplace operator converges to a deterministic measure.

[1]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[2]  Y. Fyodorov,et al.  Universality of level correlation function of sparse random matrices , 1991 .

[3]  T. Tao Topics in Random Matrix Theory , 2012 .

[4]  M. Walters Surveys in Combinatorics 2011: Random geometric graphs , 2011 .

[5]  Paul Blackwell,et al.  Spectra of adjacency matrices of random geometric graphs , 2006 .

[6]  G. Markowsky,et al.  On Dedekind’s problem: the number of isotone Boolean functions. II , 1975 .

[7]  P. Erdos,et al.  On the strength of connectedness of a random graph , 1964 .

[8]  Orestis Georgiou,et al.  Spectral statistics of random geometric graphs , 2016, 1608.01154.

[9]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[10]  George B. Mertzios A matrix characterization of interval and proper interval graphs , 2008, Appl. Math. Lett..

[11]  R. Durrett Random Graph Dynamics: References , 2006 .

[12]  E. Palmer Graphical evolution: an introduction to the theory of random graphs , 1985 .

[13]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[14]  Matthias Hein,et al.  Error Estimates for Spectral Convergence of the Graph Laplacian on Random Geometric Graphs Toward the Laplace–Beltrami Operator , 2018, Found. Comput. Math..

[15]  Tiefeng Jiang,et al.  SPECTRAL DISTRIBUTIONS OF ADJACENCY AND LAPLACIAN MATRICES OF RANDOM GRAPHS , 2010, 1011.2608.

[16]  V. F. Kolchin,et al.  Random Graphs: Contents , 1998 .

[17]  Hiroshi Maehara,et al.  Space graphs and sphericity , 1984, Discret. Appl. Math..

[18]  Spectral density singularities, level statistics, and localization in a sparse random matrix ensemble. , 1992 .

[19]  Kevin E. Bassler,et al.  Mesoscopic structures and the Laplacian spectra of random geometric graphs , 2014, J. Complex Networks.

[20]  Y. C. Verdière,et al.  Spectres de graphes , 1998 .

[21]  Thomas Puppe Spectral Graph Drawing: A Survey , 2008 .

[22]  Zygmunt Jackowski A new characterization of proper interval graphs , 1992, Discret. Math..

[23]  Stephen Smale,et al.  Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..

[24]  Ross J. Kang,et al.  Sphere and Dot Product Representations of Graphs , 2012, Discret. Comput. Geom..

[25]  Matthew Kahle,et al.  Topology of random geometric complexes: a survey , 2014, J. Appl. Comput. Topol..

[26]  C. Lekkeikerker,et al.  Representation of a finite graph by a set of intervals on the real line , 1962 .

[27]  F. Chung,et al.  Complex Graphs and Networks , 2006 .

[28]  B. Bollobás The evolution of random graphs , 1984 .

[29]  R. Adler,et al.  Random geometric complexes in the thermodynamic regime , 2014, Probability Theory and Related Fields.

[30]  Linyuan Lu,et al.  Complex Graphs and Networks (CBMS Regional Conference Series in Mathematics) , 2006 .

[31]  Béla Bollobás,et al.  Random Graphs , 1985 .

[32]  E. N. Gilbert,et al.  Random Plane Networks , 1961 .

[33]  G. J. Rodgers,et al.  Density of states of sparse random matrices , 1990 .

[34]  Matthew Kahle,et al.  Random Geometric Complexes , 2009, Discret. Comput. Geom..

[35]  J. Spencer Probabilistic Methods in Combinatorics , 1974 .

[36]  Rodgers,et al.  Density of states of a sparse random matrix. , 1988, Physical review. B, Condensed matter.

[37]  S. Ross A random graph , 1981 .

[38]  J. Jost,et al.  Hypergraph Laplace operators for chemical reaction networks , 2018, Advances in Mathematics.

[39]  P. Stadler,et al.  Spectral classes of regular, random, and empirical graphs , 2014, 1406.6454.

[40]  Antonio Auffinger,et al.  Topologies of Random Geometric Complexes on Riemannian Manifolds in the Thermodynamic Limit , 2018, 1812.09224.

[41]  Mathew D. Penrose,et al.  Random Geometric Graphs , 2003 .

[42]  S. Evangelou A numerical study of sparse random matrices , 1992 .

[43]  F. Nazarov,et al.  Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions , 2015, 1507.02017.

[44]  S. Mukherjee,et al.  The topology of probability distributions on manifolds , 2013, 1307.1123.

[45]  S. N. Evangelou Quantum percolation and the Anderson transition in dilute systems , 1983 .

[46]  Rick Durrett,et al.  Random Graph Dynamics (Cambridge Series in Statistical and Probabilistic Mathematics) , 2006 .

[47]  P. Sarnak,et al.  Topologies of Nodal Sets of Random Band‐Limited Functions , 2013, Communications on Pure and Applied Mathematics.

[48]  Khanh Duy Trinh,et al.  Strong Law of Large Numbers for Betti Numbers in the Thermodynamic Regime , 2018, Journal of Statistical Physics.