Random Geometric Complexes and Graphs on Riemannian Manifolds in the Thermodynamic Limit
暂无分享,去创建一个
[1] Duncan J. Watts,et al. Collective dynamics of ‘small-world’ networks , 1998, Nature.
[2] Y. Fyodorov,et al. Universality of level correlation function of sparse random matrices , 1991 .
[3] T. Tao. Topics in Random Matrix Theory , 2012 .
[4] M. Walters. Surveys in Combinatorics 2011: Random geometric graphs , 2011 .
[5] Paul Blackwell,et al. Spectra of adjacency matrices of random geometric graphs , 2006 .
[6] G. Markowsky,et al. On Dedekind’s problem: the number of isotone Boolean functions. II , 1975 .
[7] P. Erdos,et al. On the strength of connectedness of a random graph , 1964 .
[8] Orestis Georgiou,et al. Spectral statistics of random geometric graphs , 2016, 1608.01154.
[9] U. Feige,et al. Spectral Graph Theory , 2015 .
[10] George B. Mertzios. A matrix characterization of interval and proper interval graphs , 2008, Appl. Math. Lett..
[11] R. Durrett. Random Graph Dynamics: References , 2006 .
[12] E. Palmer. Graphical evolution: an introduction to the theory of random graphs , 1985 .
[13] Albert,et al. Emergence of scaling in random networks , 1999, Science.
[14] Matthias Hein,et al. Error Estimates for Spectral Convergence of the Graph Laplacian on Random Geometric Graphs Toward the Laplace–Beltrami Operator , 2018, Found. Comput. Math..
[15] Tiefeng Jiang,et al. SPECTRAL DISTRIBUTIONS OF ADJACENCY AND LAPLACIAN MATRICES OF RANDOM GRAPHS , 2010, 1011.2608.
[16] V. F. Kolchin,et al. Random Graphs: Contents , 1998 .
[17] Hiroshi Maehara,et al. Space graphs and sphericity , 1984, Discret. Appl. Math..
[18] Spectral density singularities, level statistics, and localization in a sparse random matrix ensemble. , 1992 .
[19] Kevin E. Bassler,et al. Mesoscopic structures and the Laplacian spectra of random geometric graphs , 2014, J. Complex Networks.
[20] Y. C. Verdière,et al. Spectres de graphes , 1998 .
[21] Thomas Puppe. Spectral Graph Drawing: A Survey , 2008 .
[22] Zygmunt Jackowski. A new characterization of proper interval graphs , 1992, Discret. Math..
[23] Stephen Smale,et al. Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..
[24] Ross J. Kang,et al. Sphere and Dot Product Representations of Graphs , 2012, Discret. Comput. Geom..
[25] Matthew Kahle,et al. Topology of random geometric complexes: a survey , 2014, J. Appl. Comput. Topol..
[26] C. Lekkeikerker,et al. Representation of a finite graph by a set of intervals on the real line , 1962 .
[27] F. Chung,et al. Complex Graphs and Networks , 2006 .
[28] B. Bollobás. The evolution of random graphs , 1984 .
[29] R. Adler,et al. Random geometric complexes in the thermodynamic regime , 2014, Probability Theory and Related Fields.
[30] Linyuan Lu,et al. Complex Graphs and Networks (CBMS Regional Conference Series in Mathematics) , 2006 .
[31] Béla Bollobás,et al. Random Graphs , 1985 .
[32] E. N. Gilbert,et al. Random Plane Networks , 1961 .
[33] G. J. Rodgers,et al. Density of states of sparse random matrices , 1990 .
[34] Matthew Kahle,et al. Random Geometric Complexes , 2009, Discret. Comput. Geom..
[35] J. Spencer. Probabilistic Methods in Combinatorics , 1974 .
[36] Rodgers,et al. Density of states of a sparse random matrix. , 1988, Physical review. B, Condensed matter.
[37] S. Ross. A random graph , 1981 .
[38] J. Jost,et al. Hypergraph Laplace operators for chemical reaction networks , 2018, Advances in Mathematics.
[39] P. Stadler,et al. Spectral classes of regular, random, and empirical graphs , 2014, 1406.6454.
[40] Antonio Auffinger,et al. Topologies of Random Geometric Complexes on Riemannian Manifolds in the Thermodynamic Limit , 2018, 1812.09224.
[41] Mathew D. Penrose,et al. Random Geometric Graphs , 2003 .
[42] S. Evangelou. A numerical study of sparse random matrices , 1992 .
[43] F. Nazarov,et al. Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions , 2015, 1507.02017.
[44] S. Mukherjee,et al. The topology of probability distributions on manifolds , 2013, 1307.1123.
[45] S. N. Evangelou. Quantum percolation and the Anderson transition in dilute systems , 1983 .
[46] Rick Durrett,et al. Random Graph Dynamics (Cambridge Series in Statistical and Probabilistic Mathematics) , 2006 .
[47] P. Sarnak,et al. Topologies of Nodal Sets of Random Band‐Limited Functions , 2013, Communications on Pure and Applied Mathematics.
[48] Khanh Duy Trinh,et al. Strong Law of Large Numbers for Betti Numbers in the Thermodynamic Regime , 2018, Journal of Statistical Physics.