Intermediate mass black holes in accreting binaries: formation, evolution and observational appearance

We study the origin of the ultraluminous X-ray source M82 X-1 in the nearby starburst galaxy M82. This X-ray source is of particular interest as it is currently the best candidate for an intermediate mass black hole; it is associated with a 54mHz quasi-periodic oscillation with a relatively low (~1 keV) blackbody temperature. We perform detailed binary evolution calculations of 2-15 Msolar stars which transfer mass to a 100-2000 Msolar black hole and present an empirical model for the X-ray characteristics expected for such binaries. Based on the binary evolution calculations and the assumption in our simulations we conclude that the most likely candidate for the bright X-ray source M82 X-1 is a 10-15 Msolar star near the end of its main sequence or slightly evolved, which transfers mass to a ~1000 Msolar black hole. We expect the system to be in the high/soft state. In that case the binary will not be visible as a source of gravitational wave radiation, but other transient X-ray binaries with lower mass donors way be rather bright sources of gravitational wave radiation.

[1]  M. Nowak,et al.  Hiding in Plain Sight: Chandra Observations of the Quiescent Neutron Star 4U 2129+47 in Eclipse , 2002, astro-ph/0204503.

[2]  Sera Markoff,et al.  Population X: Are the super-Eddington X-ray sources beamed jets in microblazars or intermediate mass black holes? , 2002 .

[3]  Douglas P. Hamilton,et al.  Production of intermediate-mass black holes in globular clusters , 2001, astro-ph/0106188.

[4]  R. Sunyaev,et al.  Hard X-ray spectrum of Cyg X-1 , 1979, Nature.

[5]  Radiation mechanisms and geometry of cygnus X-1 in the soft state , 1999, astro-ph/9905146.

[6]  A. R. Rao,et al.  OSSE and RXTE Observations of GRS 1915+105: Evidence for Nonthermal Comptonization , 2001, astro-ph/0104054.

[7]  Junichiro Makino,et al.  Formation of massive black holes through runaway collisions in dense young star clusters , 2004, Nature.

[8]  E. Meyer-Hofmeister Why soft X-ray transients can remain in the low/hard state during outburst , 2004 .

[9]  C. Tout,et al.  Stellar evolution models for Z = 0.0001 to 0.03 (Pols+ 1998) , 1998 .

[10]  M. Nowak TOWARD A UNIFIED VIEW OF BLACK-HOLE HIGH-ENERGY STATES , 1995, astro-ph/9509046.

[11]  Andrew Ulmer,et al.  Flares from the Tidal Disruption of Stars by Massive Black Holes , 1999 .

[12]  Marc Klein-Wolt,et al.  Correlated X-ray Spectral and Timing Behavior of the Black Hole Candidate , 2000 .

[13]  Stuart Louis Shapiro,et al.  The Collapse of Dense Star Clusters to Supermassive Black Holes: Binaries and Gravitational Radiation , 1987 .

[14]  Simon F. Portegies Zwart,et al.  The Runaway Growth of Intermediate-Mass Black Holes in Dense Star Clusters , 2002, astro-ph/0201055.

[15]  T. Belloni,et al.  Relativistic Iron Emission and Disk Reflection in Galactic Microquasar XTE J1748–288 , 2000, astro-ph/0008118.

[16]  L. Ho,et al.  XMM–Newton observations of ultraluminous X–ray sources in nearby galaxies , 2002, astro-ph/0206418.

[17]  Mario Livio,et al.  The Properties of X-Ray and Optical Light Curves of X-Ray Novae , 1997 .

[18]  A. Wilson,et al.  A Chandra X-Ray Study of NGC 1068. II. The Luminous X-Ray Source Population , 2003, astro-ph/0303387.

[19]  E. T. Harlaftis,et al.  The rotational broadening and the mass of the donor star of GRS 1915+105 , 2004 .

[20]  Heidelberg,et al.  Formation of Massive Black Holes in Dense Star Clusters , 2003 .

[21]  M. Nowak,et al.  Coronal-temporal correlations in GX 339-4: hysteresis, possible reflection changes and implications for advection-dominated accretion flows , 2002, astro-ph/0201383.

[22]  Ireland,et al.  New Evidence for Black Hole Event Horizons from Chandra , 2000, astro-ph/0012452.

[23]  Simon F. Portegies Zwart,et al.  Ultraluminous X-Ray Sources as Intermediate-Mass Black Holes Fed by Tidally Captured Stars , 2003, astro-ph/0312597.

[24]  Martin J. Rees,et al.  Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies , 1988, Nature.

[25]  Alan M. Levine,et al.  Complete RXTE Spectral Observations of the Black Hole X-ray Nova XTE J1550–564 , 2000 .

[26]  M. Klis Quasi-periodic oscillations and noise in accreting black holes and low-magnetic field neutron stars , 1995 .

[27]  M. B. Davies,et al.  Ultraluminous X-Ray Sources in External Galaxies , 2001 .

[28]  D. Smith,et al.  Orbital and Superorbital Periods of 1E 1740.7–2942 and GRS 1758–258 , 2002, astro-ph/0209255.

[29]  P. A. Charles,et al.  X-ray irradiation in low-mass binary systems , 1999 .

[30]  John Kormendy,et al.  Inward Bound—The Search for Supermassive Black Holes in Galactic Nuclei , 1995 .

[31]  Richard E. Griffiths,et al.  X-ray emission from M82 , 1984 .

[32]  W. Lewin,et al.  Compact stellar X-ray sources , 2006 .

[33]  Cambridge,et al.  Evidence for an intermediate-mass black hole and a multi-zone warm absorber in NGC 4395 , 2003, astro-ph/0302108.

[34]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[35]  J. M. Miller,et al.  X-Ray Spectroscopic Evidence for Intermediate-Mass Black Holes: Cool Accretion Disks in Two Ultraluminous X-Ray Sources , 2003 .

[36]  A. R. King,et al.  Resolved Jets and Long-Period Black Hole X-Ray Novae , 2003, astro-ph/0302230.

[37]  Mitchell C. Begelman,et al.  Super-Eddington Fluxes from Thin Accretion Disks? , 2002, astro-ph/0203030.

[38]  Yet another galaxy identification for an ultraluminous X-ray source , 2003, astro-ph/0305452.

[39]  Kip S. Thorne,et al.  Cygnus X-1: an interpretation of the spectrum and its variability. , 1975 .

[40]  S. Kitamoto,et al.  Large Hysteretic Behavior of Stellar Black Hole Candidate X-Ray Binaries , 1995 .

[41]  M. Garcia,et al.  The X-Ray Spectra of Black Hole X-Ray Novae in Quiescence as Measured by Chandra , 2001, astro-ph/0111134.

[42]  S. Kitamoto,et al.  Hysteretic behavior of a black hole candidate X-ray binary GS1124-683 , 1999 .

[43]  Charles D. Bailyn,et al.  A Black Hole in the Superluminal Source SAX J1819.3–2525 (V4641 Sgr) , 2000, astro-ph/0103045.

[44]  R. Narayan,et al.  Advection-Dominated Accretion and the Spectral States of Black Hole X-Ray Binaries: Application to Nova Muscae 1991 , 1997 .

[45]  B. A. Harmon,et al.  Radio and X-Ray Observations of the 1998 Outburst of the Recurrent X-Ray Transient 4U 1630–47 , 1999 .

[46]  M. Nowak,et al.  On the Enigmatic X-Ray Source V1408 Aquilae (=4U 1957+11) , 1999, astro-ph/9903276.

[47]  Philipp Podsiadlowski,et al.  On the formation and evolution of black hole binaries , 2003 .

[48]  Aya Kubota,et al.  Another interpretation of the power-law-type spectrum of an ultraluminous compact X-ray source in IC 342 , 2002 .

[49]  David L. Gilden,et al.  Gravitational radiation from colliding compact stars: Hydrodynamical calculations in two dimensions , 1980 .

[50]  Edward J. Wollack,et al.  First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: Determination of cosmological parameters , 2003, astro-ph/0302209.

[51]  P. P. Eggleton,et al.  Approximate input physics for stellar modelling , 1995 .

[52]  T. Belloni,et al.  GRS 1915+105 and the Disc-Jet Coupling in Accreting Black Hole Systems , 2004 .

[53]  Thomas J. Maccarone,et al.  Do X-ray binary spectral state transition luminosities vary? , 2003, astro-ph/0308036.

[54]  M. McConnell,et al.  A High-Sensitivity Measurement of the MeV Gamma-Ray Spectrum of Cygnus X-1 , 2000, astro-ph/0001484.

[55]  Tod E. Strohmayer,et al.  Discovery of X-Ray Quasi-periodic Oscillations from an Ultraluminous X-Ray Source in M82: Evidence against Beaming , 2003, astro-ph/0303665.

[56]  A. C. Fabian,et al.  Revealing a cool accretion disk in the ultraluminous X-ray source M81 X-9 (Holmberg IX X-1): Evidence for an intermediate-mass black hole , 2004 .

[57]  Toshikazu Ebisuzaki,et al.  UvA-DARE ( Digital Academic Repository ) Missing Link Found ? The " Runaway " Path to Supermassive Black Holes , 2001 .

[58]  P. Jonker,et al.  Jet-dominated states: an alternative to advection across black hole event horizons in ‘quiescent’ X-ray binaries , 2003, astro-ph/0306614.

[59]  V. Kalogera,et al.  An Observational Diagnostic for Ultraluminous X-Ray Sources , 2003 .

[60]  Patrick Seitzer,et al.  The Optical Counterpart of an Ultraluminous X-Ray Source in NGC 5204 , 2004, astro-ph/0501305.

[61]  Alexei V. Filippenko,et al.  TO APPEAR IN The Astrophysical Journal (Letters). Preprint typeset using L ATEX style emulateapj v. 11/12/01 A LOW-MASS CENTRAL BLACK HOLE IN THE BULGELESS SEYFERT 1 GALAXY NGC 4395 , 2003 .

[62]  A. R. King,et al.  Black hole transients and the Eddington limit , 2000, astro-ph/0002286.

[63]  A. Athey,et al.  The lack of very ultraluminous X-ray sources in early-type galaxies , 2003, astro-ph/0312393.

[64]  C. A. Haswell,et al.  Complete and Simultaneous Spectral Observations of the Black Hole X-Ray Nova XTE J1118+480 , 2001, astro-ph/0103051.

[65]  P. Martini,et al.  Coevolution of Black Holes and Galaxies , 2004 .

[66]  M. Livio,et al.  Tidal Disruption of a Solar-Type Star by a Supermassive Black Hole , 2000, astro-ph/0002499.

[67]  Douglas M. Eardley,et al.  A two-temperature accretion disk model for Cygnus X-1: structure and spectrum. , 1976 .

[68]  A. Fabian,et al.  High‐Energy Processes in Accreting Black Holes , 1998 .

[69]  A universal radio-X-ray correlation in low/hard state black hole binaries , 2003, astro-ph/0305231.

[70]  Martin J. Rees,et al.  ApJ, in press Preprint typeset using L ATEX style emulateapj v. 04/03/99 MASSIVE BLACK HOLES AS POPULATION III REMNANTS , 2001 .

[71]  L. Ho,et al.  Active Galactic Nuclei with Candidate Intermediate-Mass Black Holes , 2004, astro-ph/0404110.