Structure Determination of an Ag(I) -Mediated Cytosine-Cytosine Base Pair within DNA Duplex in Solution with (1) H/(15) N/(109) Ag NMR Spectroscopy.

The structure of an Ag(I) -mediated cytosine-cytosine base pair, C-Ag(I) -C, was determined with NMR spectroscopy in solution. The observation of 1-bond (15) N-(109) Ag J-coupling ((1) J((15) N,(109) Ag): 83 and 84 Hz) recorded within the C-Ag(I) -C base pair evidenced the N3-Ag(I) -N3 linkage in C-Ag(I) -C. The triplet resonances of the N4 atoms in C-Ag(I) -C demonstrated that each exocyclic N4 atom exists as an amino group (-NH2 ), and any isomerization and/or N4-Ag(I) bonding can be excluded. The 3D structure of Ag(I) -DNA complex determined with NOEs was classified as a B-form conformation with a notable propeller twist of C-Ag(I) -C (-18.3±3.0°). The (109) Ag NMR chemical shift of C-Ag(I) -C was recorded for cytidine/Ag(I) complex (δ((109) Ag): 442 ppm) to completed full NMR characterization of the metal linkage. The structural interpretation of NMR data with quantum mechanical calculations corroborated the structure of the C-Ag(I) -C base pair.

[1]  S. Wind,et al.  Comparison of Canonical versus Silver(I)-Mediated Base-Pairing on Single Molecule Conductance in Polycytosine dsDNA , 2016 .

[2]  J. Kondo,et al.  Structures, physicochemical properties, and applications of T-Hg(II)-T, C-Ag(I)-C, and other metallo-base-pairs. , 2015, Chemical communications.

[3]  Kyoko Furuita,et al.  Exploring a DNA Sequence for the Three-Dimensional Structure Determination of a Silver(I)-Mediated C-C Base Pair in a DNA Duplex By 1H NMR Spectroscopy , 2015, Nucleosides, nucleotides & nucleic acids.

[4]  J. Kondo,et al.  High-Resolution Crystal Structure of a Silver(I)-RNA Hybrid Duplex Containing Watson-Crick-like C-Silver(I)-C Metallo-Base Pairs. , 2015, Angewandte Chemie.

[5]  Chojiro Kojima,et al.  Direct detection of the mercury-nitrogen bond in the thymine-Hg(II)-thymine base-pair with (199)Hg NMR spectroscopy. , 2015, Chemical communications.

[6]  H. Park,et al.  Technological applications arising from the interactions of DNA bases with metal ions. , 2014, Current opinion in biotechnology.

[7]  A. Ono,et al.  Hg2+-trapping beads: Hg2+-specific recognition through thymine-Hg(II)-thymine base pairing. , 2014, Chemical & pharmaceutical bulletin.

[8]  A. Ono,et al.  Regulated incorporation of two different metal ions into programmed sites in a duplex by DNA polymerase catalyzed primer extension. , 2014, Angewandte Chemie.

[9]  Yoshiyuki Tanaka,et al.  Theoretical and experimental study of charge transfer through DNA: impact of mercury mediated T-Hg-T base pair. , 2014, The journal of physical chemistry. B.

[10]  J. Kondo,et al.  Crystal structure of metallo DNA duplex containing consecutive Watson-Crick-like T-Hg(II)-T base pairs. , 2014, Angewandte Chemie.

[11]  J. Kondo,et al.  The structure of metallo-DNA with consecutive thymine–HgII–thymine base pairs explains positive entropy for the metallo base pair formation , 2013, Nucleic acids research.

[12]  Y. Wang,et al.  Bioinspired supramolecular fibers for mercury ion adsorption , 2013 .

[13]  Ka-Ho Leung,et al.  Label-free luminescent oligonucleotide-based probes. , 2013, Chemical Society reviews.

[14]  Nianqiang Wu,et al.  Nanostructured Sensors for Detection of Heavy Metals: A Review , 2013 .

[15]  Sai Bi,et al.  Metal ions triggered ligase activity for rolling circle amplification and its application in molecular logic gate operations , 2013 .

[16]  Itamar Willner,et al.  Detection of metal ions (Cu2+, Hg2+) and cocaine by using ligation DNAzyme machinery. , 2012, Chemistry.

[17]  A. Ono,et al.  Thermodynamic and structural properties of the specific binding between Ag⁺ ion and C:C mismatched base pair in duplex DNA to form C-Ag-C metal-mediated base pair. , 2012, Biochimie.

[18]  A. Ono,et al.  Ag(I) ion mediated formation of a C-A mispair by DNA polymerases. , 2012, Angewandte Chemie.

[19]  B. Nordén,et al.  Entropy–enthalpy compensation as a fundamental concept and analysis tool for systematical experimental data , 2012 .

[20]  C. Fan,et al.  High-selective removal of ultra-low level mercury ions from aqueous solution using oligothymonucleic acid functionalized polyethylene film , 2012, Science China Chemistry.

[21]  Mitsuhiko Shionoya,et al.  Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson-Crick base pairs. , 2012, Accounts of chemical research.

[22]  A. Ono,et al.  Binding of metal ions by pyrimidine base pairs in DNA duplexes. , 2011, Chemical Society reviews.

[23]  Kentaro Tanaka,et al.  Direct conductance measurement of individual metallo-DNA duplexes within single-molecule break junctions. , 2011, Angewandte Chemie.

[24]  P. J. Huang,et al.  Immobilization of DNA on magnetic microparticles for mercury enrichment and detection with flow cytometry. , 2011, Chemistry.

[25]  D. Chan,et al.  Oligonucleotide-based luminescent detection of metal ions. , 2011, Chemistry, an Asian journal.

[26]  Arben Merkoçi,et al.  Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy-metal detection. , 2011, Chemical reviews.

[27]  A. Ono,et al.  Detection of single nucleotide polymorphisms by the specific interaction between transition metal ions and mismatched base pairs in duplex DNA , 2011 .

[28]  A. Asano,et al.  Electron Mobility in a Mercury-mediated Duplex of Triazole-linked DNA (TLDNA) , 2011 .

[29]  Itamar Willner,et al.  DNA machines: bipedal walker and stepper. , 2011, Nano letters.

[30]  Cheulhee Jung,et al.  "Illusionary" polymerase activity triggered by metal ions: use for molecular logic-gate operations. , 2010, Angewandte Chemie.

[31]  Itamar Willner,et al.  All-DNA finite-state automata with finite memory , 2010, Proceedings of the National Academy of Sciences.

[32]  Mitsuhiko Shionoya,et al.  Metal–base pairing in DNA , 2010 .

[33]  S. Wada,et al.  Incorporation of thymine nucleotides by DNA polymerases through T-Hg(II)-T base pairing. , 2010, Angewandte Chemie.

[34]  Brendan D. Smith,et al.  Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury(II) detection and removal in water. , 2010, Journal of the American Chemical Society.

[35]  I. Willner,et al.  Ion-induced DNAzyme switches. , 2010, Chemical communications.

[36]  R. Sigel,et al.  Solution structure of a DNA double helix with consecutive metal-mediated base pairs. , 2010, Nature chemistry.

[37]  Julia Xiaojun Zhao,et al.  Sensing Mercury for Biomedical and Environmental Monitoring , 2009, Sensors.

[38]  D. Shangguan,et al.  Specific mercury(II) adsorption by thymine-based sorbent. , 2009, Talanta.

[39]  A. Ono,et al.  Specific interactions between silver(I) ions and cytosine-cytosine pairs in DNA duplexes. , 2008, Chemical communications.

[40]  Chih-Ching Huang,et al.  Fluorescence detection of single nucleotide polymorphisms using a universal molecular beacon , 2008, Nucleic acids research.

[41]  Itamar Willner,et al.  Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. , 2008, Angewandte Chemie.

[42]  Yi Lu,et al.  Rational design of "turn-on" allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. , 2007, Angewandte Chemie.

[43]  T. Carell,et al.  DNA--metal base pairs. , 2007, Angewandte Chemie.

[44]  T. Carell,et al.  DNA‐Metall‐Basenpaare , 2007 .

[45]  Chojiro Kojima,et al.  15N-15N J-coupling across Hg(II): direct observation of Hg(II)-mediated T-T base pairs in a DNA duplex. , 2007, Journal of the American Chemical Society.

[46]  Takashi Fujimoto,et al.  MercuryII-mediated formation of thymine-HgII-thymine base pairs in DNA duplexes. , 2006, Journal of the American Chemical Society.

[47]  A. Bard,et al.  Scanning electrochemical microscopy. 51. Studies of self-assembled monolayers of DNA in the absence and presence of metal ions. , 2005, The journal of physical chemistry. B.

[48]  A. Ono,et al.  Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions. , 2004, Angewandte Chemie.

[49]  H. Tajmir-Riahi,et al.  Silver(I) complexes with DNA and RNA studied by Fourier transform infrared spectroscopy and capillary electrophoresis. , 2001, Biophysical journal.

[50]  Yong Wang,et al.  Silver(I) ions modulate the stability of DNA duplexes containing cytosine, methylcytosine and hydroxymethylcytosine at different salt concentrations. , 2015, RSC advances.

[51]  Jens Müller,et al.  Nucleic Acids With Metal‐Mediated Base Pairs and Their Applications , 2013 .

[52]  D. Turner,et al.  RNA structure prediction. , 1988, Annual review of biophysics and biophysical chemistry.