Evaluation of NASA Deep Blue/SOAR aerosol retrieval algorithms applied to AVHRR measurements

The Deep Blue (DB) and Satellite Ocean Aerosol Retrieval (SOAR) algorithms have previously been applied to observations from sen-sors like the Moderate Resolution Imaging Spectroradiometers (MODIS) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) to provide records of mid-visible aerosol optical depth (AOD) and related quantities over land and ocean surfaces respectively. Recently, DB and SOAR have also been applied to Ad-vanced Very High Resolution Radiometer (AVHRR) observations from several platforms (NOAA11, NOAA14, and NOAA18), to demonstrate the potential for extending the DB and SOAR AOD records. This study provides an evaluation of the initial version (V001) of the resulting AVHRR-based AOD data set, including validation against Aerosol Robotic Network (AERONET) and ship-borne observations, and comparison against both other AVHRR AOD Research (GESTAR), Universities Space Research Association. records and MODIS/SeaWiFS products at select long-term AERONET sites. Although it is difficult to distil error characteristics into a simple expression, the results suggest that one standard deviation confidence intervals on retrieved AOD of ±(0.03+15%) over water and ±(0.05+25%) over land represent the typical level of uncertainty, with a tendency towards negative biases in high-AOD conditions, caused by a combination of algorithmic assumptions and sensor calibration issues. Most of the available validation data are for NOAA18 AVHRR, although performance appears to be similar for the NOAA11 and NOAA14 sensors as well.

[1]  Alexander Smirnov,et al.  Regional evaluation of an advanced very high resolution radiometer (AVHRR) two‐channel aerosol retrieval algorithm , 2004 .

[2]  Alexander Smirnov,et al.  SeaWiFS Ocean Aerosol Retrieval (SOAR): Algorithm, validation, and comparison with other data sets , 2012 .

[3]  A. Hauser,et al.  Validation of a modified AVHRR aerosol optical depth retrieval algorithm over Central Europe , 2010 .

[4]  Oleg Dubovik,et al.  Measurement of atmospheric optical parameters on U.S. Atlantic coast sites, ships, and Bermuda during TARFOX , 2000 .

[5]  Yoram J. Kaufman,et al.  Atmospheric correction against algorithm for NOAA-AVHRR products: theory and application , 1992, IEEE Trans. Geosci. Remote. Sens..

[6]  E. Fetzer,et al.  Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought , 2016, Proceedings of the National Academy of Sciences.

[7]  M. Mishchenko,et al.  Global validation of two-channel AVHRR aerosol optical thickness retrievals over the oceans , 2004 .

[8]  D. Diner,et al.  Intercomparison of desert dust optical depth from satellite measurements , 2012 .

[9]  Jochen Landgraf,et al.  Retrieval of aerosol properties over land surfaces: capabilities of multiple-viewing-angle intensity and polarization measurements. , 2007, Applied optics.

[10]  Michael D. King,et al.  Deep Blue Retrievals of Asian Aerosol Properties During ACE-Asia , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[11]  T. Eck,et al.  Optical Properties of Atmospheric Aerosol in Maritime Environments , 2002 .

[12]  Robert Frouin,et al.  Maritime aerosol optical thickness measured by handheld sun photometers , 2004 .

[13]  Menghua Wang,et al.  Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective , 2009 .

[14]  A. Lacis,et al.  Aerosol retrievals over the ocean by use of channels 1 and 2 AVHRR data: sensitivity analysis and preliminary results. , 1999, Applied optics.

[15]  T. Eck,et al.  An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET , 2001 .

[16]  Alexander Smirnov,et al.  Maritime Aerosol Network as a component of Aerosol Robotic Network , 2009 .

[17]  Ziauddin Ahmad,et al.  New aerosol models for the retrieval of aerosol optical thickness and normalized water-leaving radiances from the SeaWiFS and MODIS sensors over coastal regions and open oceans. , 2010, Applied optics.

[18]  Andrew M. Sayer,et al.  Validation and uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data , 2013 .

[19]  Alexander Smirnov,et al.  Cloud-Screening and Quality Control Algorithms for the AERONET Database , 2000 .

[20]  N. C. Hsu,et al.  Vicarious calibration of S-NPP VIIRS reflective solar M-bands against MODIS Aqua over dark water scenes , 2016 .

[21]  John P. Burrows,et al.  Retrieval of spectral aerosol optical thickness over land using ocean color sensors MERIS and SeaWiFS , 2010 .

[22]  T. Eck,et al.  Spectral discrimination of coarse and fine mode optical depth , 2003 .

[23]  Andi Walther,et al.  Climatology Analysis of Aerosol Effect on Marine Water Cloud from Long-Term Satellite Climate Data Records , 2016, Remote. Sens..

[24]  A. Marshak,et al.  Multi-satellite aerosol observations in the vicinity of clouds , 2012 .

[25]  Alexander Smirnov,et al.  Measurement of aerosol optical depth in the Atlantic Ocean and Mediterranean Sea , 1995, Remote Sensing.

[26]  E. Vermote,et al.  Absolute calibration of AVHRR visible and near-infrared channels using ocean and cloud views , 1995 .

[27]  M. Mishchenko,et al.  Satellite remote sensing reveals regional tropospheric aerosol trends. , 2007, Optics express.

[28]  G. Stenchikov,et al.  Satellite retrievals of dust aerosol over the Red Sea and the Persian Gulf (2005–2015) , 2017 .

[29]  Soo Chin Liew,et al.  Tropical cirrus cloud contamination in sun photometer data , 2011 .

[30]  Lin Chen,et al.  Retrieval and Validation of Atmospheric Aerosol Optical Depth From AVHRR Over China , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Alyn Lambert,et al.  Measurements of the evolution of the Mt. Pinatubo aerosol cloud by ISAMS , 1993 .

[32]  A. Tarussov,et al.  Aerosol optical depth over the oceans: Analysis in terms of synoptic air mass types , 1995 .

[33]  Soo Chin Liew,et al.  Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program , 2013 .

[34]  A. Lacis,et al.  Aerosol retrievals from channel-1 and -2 AVHRR radiances: Long-term trends updated and revisited , 2012 .

[35]  Woogyung V. Kim,et al.  An overview of mesoscale aerosol processes, comparisons, and validation studies from DRAGON networks , 2017 .

[36]  Andrew K. Heidinger,et al.  A global survey of the effect of cloud contamination on the aerosol optical thickness and its long‐term trend derived from operational AVHRR satellite observations , 2013 .

[37]  Jeffrey S. Reid,et al.  MODIS aerosol product analysis for data assimilation: Assessment of over‐ocean level 2 aerosol optical thickness retrievals , 2006 .

[38]  J. Randerson,et al.  El Niño and health risks from landscape fire emissions in Southeast Asia , 2012, Nature climate change.

[39]  Extension and Statistical Analysis of the GACP Aerosol Optical Thickness Record. , 2015 .

[40]  Felix C. Seidel,et al.  Critical surface albedo and its implications to aerosol remote sensing , 2011 .

[41]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[42]  N. C. Hsu,et al.  AERONET‐Based Nonspherical Dust Optical Models and Effects on the VIIRS Deep Blue/SOAR Over Water Aerosol Product , 2017, Journal of geophysical research. Atmospheres : JGR.

[43]  Alexander Smirnov,et al.  Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network , 2010 .

[44]  Yujie Wang,et al.  Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm , 2011 .

[45]  B. Holben,et al.  Estimating Marine Aerosol Particle Volume and Number from Maritime Aerosol Network Data , 2012 .

[46]  E. Vermote,et al.  Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance , 2007 .

[47]  Felix D. Schönbrodt,et al.  At what sample size do correlations stabilize , 2013 .

[48]  Yong Xue,et al.  Development, Production and Evaluation of Aerosol Climate Data Records from European Satellite Observations (Aerosol_cci) , 2016, Remote. Sens..

[49]  Ana Maria Silva,et al.  Some considerations about Ångström exponent distributions , 2007 .

[50]  Alexander Ignatov,et al.  Development, validation, and potential enhancements to the second‐generation operational aerosol product at the National Environmental Satellite, Data, and Information Service of the National Oceanic and Atmospheric Administration , 1997 .

[51]  Brent N. Holben,et al.  Retrieving near‐global aerosol loading over land and ocean from AVHRR , 2017 .

[52]  Alexander Smirnov,et al.  Maritime aerosol network as a component of AERONET - first results and comparison with global aerosol models and satellite retrievals , 2011 .

[53]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[54]  Jin Huang,et al.  Enhanced Deep Blue aerosol retrieval algorithm: The second generation , 2013 .

[55]  Michael D. King,et al.  Aerosol properties over bright-reflecting source regions , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[56]  L. Remer,et al.  The Collection 6 MODIS aerosol products over land and ocean , 2013 .

[57]  Robert C. Levy,et al.  MODIS Collection 6 aerosol products: Comparison between Aqua's e‐Deep Blue, Dark Target, and “merged” data sets, and usage recommendations , 2014 .

[58]  J. Reid,et al.  An over-land aerosol optical depth data set for data assimilation by filtering, correction, and aggregation of MODIS Collection 5 optical depth retrievals , 2010 .

[59]  Roy G. Grainger,et al.  A sea surface reflectance model for (A)ATSR, and application to aerosol retrievals , 2010 .

[60]  David M. Winker,et al.  Investigating enhanced Aqua MODIS aerosol optical depth retrievals over the mid‐to‐high latitude Southern Oceans through intercomparison with co‐located CALIOP, MAN, and AERONET data sets , 2013 .

[61]  T. Eck,et al.  Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols , 1999 .

[62]  Larry L. Stowe,et al.  Evaluating the Potential for Retrieving Aerosol Optical Depth over Land from AVHRR Pathfinder Atmosphere Data , 2002 .

[63]  Alexander Smirnov,et al.  A Pure Marine Aerosol Model, for Use in Remote Sensing Applications , 2012 .

[64]  D. Tanré,et al.  Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances , 1997 .

[65]  Michael J. Garay,et al.  Response to "Toward unified satellite climatology of aerosol properties. 3. MODIS versus MISR versus AERONET" , 2011 .

[66]  Yong Xue,et al.  Retrieval of aerosol optical depth over land surfaces from AVHRR data , 2013 .

[67]  Yoram J. Kaufman,et al.  Evaluation of the Moderate‐Resolution Imaging Spectroradiometer (MODIS) retrievals of dust aerosol over the ocean during PRIDE , 2003 .

[68]  A. Lacis,et al.  Reducing multisensor satellite monthly mean aerosol optical depth uncertainty: 1. Objective assessment of current AERONET locations , 2016, Journal of geophysical research. Atmospheres : JGR.

[69]  N. C. Hsu,et al.  Cross-calibration of S-NPP VIIRS moderate resolution reflective solar bands against MODIS Aqua over dark water scenes. , 2017, Atmospheric measurement techniques.

[70]  Cynthia H. Twohy,et al.  Effect of changes in relative humidity on aerosol scattering near clouds , 2008 .

[71]  Zhanqing Li,et al.  Quality, compatibility, and synergy analyses of global aerosol products derived from the advanced very high resolution radiometer and Total Ozone Mapping Spectrometer , 2005, Journal of Geophysical Research.

[72]  T. Nakajima,et al.  Validation and empirical correction of MODIS AOT and AE over ocean , 2013 .

[73]  T. Eck,et al.  Global evaluation of the Collection 5 MODIS dark-target aerosol products over land , 2010 .

[74]  N. O'Neill,et al.  Measurement of aerosol optical depth in the Pacific Ocean and the North Atlantic , 1994 .

[75]  Brent N. Holben,et al.  Global and regional evaluation of over-land spectral aerosol optical depth retrievals from SeaWiFS , 2012 .