Robust Monte Carlo Sampling using Riemannian Nosé-Poincaré Hamiltonian Dynamics
暂无分享,去创建一个
[1] Yee Whye Teh,et al. Stochastic Gradient Riemannian Langevin Dynamics on the Probability Simplex , 2013, NIPS.
[2] Nitish Srivastava,et al. Modeling Documents with Deep Boltzmann Machines , 2013, UAI.
[3] S. Duane,et al. Hybrid Monte Carlo , 1987 .
[4] Ernst Hairer,et al. Simulating Hamiltonian dynamics , 2006, Math. Comput..
[5] M. Girolami,et al. Riemann manifold Langevin and Hamiltonian Monte Carlo methods , 2011, Journal of the Royal Statistical Society: Series B (Statistical Methodology).
[6] Radford M. Neal. MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.
[7] S. Nosé. A molecular dynamics method for simulations in the canonical ensemble , 1984 .
[8] Zhe Gan,et al. Scalable Deep Poisson Factor Analysis for Topic Modeling , 2015, ICML.
[9] Brian Kulis,et al. Gamma Processes, Stick-Breaking, and Variational Inference , 2015, AISTATS.
[10] Tianqi Chen,et al. Stochastic Gradient Hamiltonian Monte Carlo , 2014, ICML.
[11] Stephen D. Bond,et al. The Nosé-Poincaré Method for Constant Temperature Molecular Dynamics , 1999 .
[12] Yee Whye Teh,et al. Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.
[13] Nitish Srivastava,et al. Modeling Documents with Deep Boltzmann Machines , 2013, UAI.
[14] Tianqi Chen,et al. A Complete Recipe for Stochastic Gradient MCMC , 2015, NIPS.
[15] H. Robbins. A Stochastic Approximation Method , 1951 .
[16] L. Yin,et al. Existence and construction of dynamical potential in nonequilibrium processes without detailed balance , 2006 .
[17] Ryan Babbush,et al. Bayesian Sampling Using Stochastic Gradient Thermostats , 2014, NIPS.
[18] Lawrence Carin,et al. Negative Binomial Process Count and Mixture Modeling , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[19] Hoover,et al. Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.