A Pseudopolynomial Time O (log n )-Approximation Algorithm for Art Gallery Problems
暂无分享,去创建一个
Taejung Kim | Erik D. Demaine | Sanjay E. Sarma | Ajay Deshpande | E. Demaine | S. Sarma | Taejung Kim | Ajay A. Deshpande
[1] Stephan Eidenbenz,et al. Inapproximability Results for Guarding Polygons and Terrains , 2001, Algorithmica.
[2] Michael T. Goodrich,et al. Almost optimal set covers in finite VC-dimension , 1995, Discret. Comput. Geom..
[3] Héctor H. González-Baños,et al. A randomized art-gallery algorithm for sensor placement , 2001, SCG '01.
[4] Jorge Urrutia,et al. Art Gallery and Illumination Problems , 2000, Handbook of Computational Geometry.
[5] Miodrag Potkonjak,et al. Coverage problems in wireless ad-hoc sensor networks , 2001, Proceedings IEEE INFOCOM 2001. Conference on Computer Communications. Twentieth Annual Joint Conference of the IEEE Computer and Communications Society (Cat. No.01CH37213).
[6] D. T. Lee,et al. Computational complexity of art gallery problems , 1986, IEEE Trans. Inf. Theory.
[7] Bengt J. Nilsson,et al. Guarding lines and 2-link polygons is apx-hard , 2001, CCCG.
[8] T. C. Shermer,et al. Recent results in art galleries (geometry) , 1992, Proc. IEEE.
[9] Michael T. Goodrich,et al. Almost optimal set covers in finite VC-dimension: (preliminary version) , 1994, SCG '94.
[10] Mark de Berg,et al. Computational geometry: algorithms and applications , 1997 .
[11] Sariel Har-Peled,et al. Guarding galleries and terrains , 2002, Inf. Process. Lett..
[12] P. Valtr. Guarding galleries where no point sees a small area , 1998 .
[13] Ronald L. Rivest,et al. Introduction to Algorithms , 1990 .
[14] V. Chvátal. A combinatorial theorem in plane geometry , 1975 .
[15] Prosenjit Bose,et al. Efficient visibility queries in simple polygons , 2002, Comput. Geom..
[16] J. O'Rourke. Art gallery theorems and algorithms , 1987 .
[17] T. Shermer. Recent Results in Art Galleries , 1992 .
[18] Leonidas J. Guibas,et al. The Robot Localization Problem , 1995, SIAM J. Comput..
[19] J. Sack,et al. Handbook of computational geometry , 2000 .
[20] Jeff Erickson,et al. Dense Point Sets Have Sparse Delaunay Triangulations or “... But Not Too Nasty” , 2001, SODA '02.
[21] Jeff Erickson,et al. Nice Point Sets Can Have Nasty Delaunay Triangulations , 2001, SCG '01.