Noise-covered drift bifurcation of dissipative solitons in a planar gas-discharge system.

The trajectories of propagating self-organized, well-localized solitary patterns (dissipative solitons) in the form of electrical current filaments are experimentally investigated in a planar quasi-two-dimensional dc gas-discharge system with high Ohmic semiconductor barrier. Earlier phenomenological models qualitatively describing the experimental observations in terms of a particle model predict a transition from stationary filaments to filaments traveling with constant finite speed due to an appropriate change of the system parameters. This prediction motivates a search for a drift bifurcation in the experimental system, but a direct comparison of experimentally recorded trajectories with theoretical predictions is impossible due to the strong influence of noise. To solve this problem, the filament dynamics is modeled using an appropriate Langevin equation, allowing for the application of a stochastic data analysis technique to separate deterministic and stochastic parts of the dynamics. Simulations carried out with the particle model demonstrate the efficiency of the method. Applying the technique to the experimentally recorded trajectories yields good agreement with the predictions of the model equations. Finally, the predicted drift bifurcation is found using the semiconductor resistivity as control parameter. In the resulting bifurcation diagram, the square of the equilibrium velocity scales linearly with the control parameter.

[1]  C. Christov,et al.  Dissipative solitons , 1995 .

[2]  Dieter Jäger,et al.  Pattern formation in S-shaped negative differential conductivity material , 1987 .

[3]  Jan Raethjen,et al.  Extracting model equations from experimental data , 2000 .

[4]  A. Turing The chemical basis of morphogenesis , 1952, Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences.

[5]  Radehaus,et al.  Spatially periodic patterns in a dc gas-discharge system. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[6]  Higher instabilities in synergetic systems with continuou sysmmetries , 1993 .

[7]  F. Schweitzer,et al.  Brownian particles far from equilibrium , 2000 .

[8]  Hans-Georg Purwins,et al.  HEXAGON STRUCTURES IN A TWO-DIMENSIONAL DC-DRIVEN GAS DISCHARGE SYSTEM , 1998 .

[9]  H. Willebrand,et al.  Pattern formation in gas discharge systems with high impedance electrodes , 1987 .

[10]  Mathias Bode,et al.  Pattern formation in reaction-diffusion systems—dissipative solitons in physical systems , 1995 .

[11]  H. Purwins,et al.  Plasma spots in a gas discharge system: birth, scattering and formation of molecules , 2001 .

[12]  H. Purwins,et al.  Speed properties of a semiconductor‐discharge gap IR image converter studied with a streak camera system , 1993 .

[13]  F. Tito Arecchi,et al.  PATTERN FORMATION AND COMPETITION IN NONLINEAR OPTICS , 1999 .

[14]  Takao Ohta,et al.  Pulse dynamics in a reaction–diffusion system , 2001 .

[15]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[16]  H. Swinney,et al.  Sustained patterns in chlorite–iodide reactions in a one‐dimensional reactor , 1991 .

[17]  C. Strümpel,et al.  Spatiotemporal filamentary patterns in a dc-driven planar gas discharge system. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[18]  V. V. Bel'kov,et al.  Pattern formation in semiconductors , 1999, Nature.

[19]  和田 靖 R. Rajaraman: Solitons and Instantons; An Introduction to Solitons and Instantons in Quantum Field Theory, North-Holland, Amsterdam and New York, 1982, viii+410ページ, 23×16cm, 25,350円. , 1985 .

[20]  Mathias Bode,et al.  Spot bifurcations in three-component reaction-diffusion systems: The onset of propagation , 1998 .

[21]  Hans-Georg Purwins,et al.  Simulations of self-organized filaments in a dielectric barrier glow discharge plasma , 1999 .

[22]  Ertl,et al.  Solitons in a surface reaction. , 1991, Physical review letters.

[23]  Mathias Bode,et al.  Interacting Pulses in Three-Component Reaction-Diffusion Systems on Two-Dimensional Domains , 1997 .

[24]  A. Kolmogoroff Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung , 1931 .

[25]  Yuri A. Astrov,et al.  Application of high-speed IR converter in scientific and technological research , 2002, IS&T/SPIE Electronic Imaging.

[26]  K. Steinmüller HAKEN, H.: Synergetics. An Introduction. Springer‐Verlag, Berlin‐Heidelberg‐New York 1977. XII, 325 S., 125 Abb., DM 72.—. , 1978 .

[27]  Mikhailov,et al.  Bifurcation to traveling spots in reaction-diffusion systems. , 1994, Physical review letters.

[28]  Andreas W. Liehr,et al.  Interaction of dissipative solitons: particle-like behaviour of localized structures in a three-component reaction-diffusion system , 2002 .

[29]  M. Bode,et al.  Front-bifurcations in reaction-diffusion systems with inhomogeneous parameter distributions , 1997 .

[30]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[31]  Michel Remoissenet,et al.  Waves Called Solitons: Concepts and Experiments , 1996 .

[32]  Islamov Rs Physical model of anode glow patterns in elevated-pressure gas discharges , 2001 .

[33]  F. Niedernostheide,et al.  Spatial and Spatio‐Temporal Patterns in pnpn Semiconductor Devices , 1992 .

[34]  W. Lange,et al.  Optical pattern formation in alkali metal vapors: Mechanisms, phenomena and use , 2001 .

[35]  M. Cross,et al.  Pattern formation outside of equilibrium , 1993 .

[36]  Y. Astrov,et al.  FORMATION OF CLUSTERS OF LOCALIZED STATES IN A GAS DISCHARGE SYSTEM VIA A SELF-COMPLETION SCENARIO , 1997 .

[37]  H. Willebrand,et al.  Application of the activator inhibitor principle to physical systems , 1989 .

[38]  L M Pismen Nonlocal boundary dynamics of traveling spots in a reaction-diffusion system. , 2001, Physical review letters.

[39]  R. L. Stratonovich Conditional Markov Processes and their Application to the Theory of Optimal Control , 1968 .

[40]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1952, The Journal of physiology.

[41]  C. Schenk,et al.  INTERACTION OF SELF-ORGANIZED QUASIPARTICLES IN A TWO-DIMENSIONAL REACTION-DIFFUSION SYSTEM : THE FORMATION OF MOLECULES , 1998 .

[42]  H. Purwins,et al.  High speed conversion of infrared images with a planar gas discharge system , 1999 .

[43]  Yuri A. Astrov,et al.  Noise properties of a high-speed semiconductor-gas-discharge infrared imager , 2002, IS&T/SPIE Electronic Imaging.

[44]  H. Swinney,et al.  Experimental observation of self-replicating spots in a reaction–diffusion system , 1994, Nature.

[45]  R. Friedrich,et al.  Analysis of data sets of stochastic systems , 1998 .

[46]  H. Meinhardt Models of biological pattern formation , 1982 .