Finite-time stability and stabilization of stochastic nonlinear systems with Markovian switching

In this paper, we will investigate the finite-time stability and finite-time stabilization of stochastic nonlinear (SNL) systems with Markovian switching. Firstly, some proper criteria on finite-time globally asymptotically stable in probability (FGSP) are provided. Then, by adding a power integrator technique, a state-feedback finite-time controller is explicitly constructed. It is proven that, the equilibrium at the origin of the closed-loop systems is FGSP.

[1]  M. James,et al.  Risk-sensitive control and dynamic games for partially observed discrete-time nonlinear systems , 1994, IEEE Trans. Autom. Control..

[2]  Wei Lin,et al.  Global stabilization of cascade systems by C0 partial-state feedback , 2002, IEEE Trans. Autom. Control..

[3]  John Lygeros,et al.  Stabilization of a class of stochastic differential equations with Markovian switching , 2005, Syst. Control. Lett..

[4]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[5]  H. Nagai Bellman equations of risk sensitive control , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[6]  Dennis S. Bernstein,et al.  Finite-Time Stability of Continuous Autonomous Systems , 2000, SIAM J. Control. Optim..

[7]  D. Sworder Feedback control of a class of linear systems with jump parameters , 1969 .

[8]  T. Basar,et al.  H∞-0ptimal Control and Related Minimax Design Problems: A Dynamic Game Approach , 1996, IEEE Trans. Autom. Control..

[9]  W. Wonham Random differential equations in control theory , 1970 .

[10]  Ruth J. Williams,et al.  Stabilization of stochastic nonlinear systems driven by noise of unknown covariance , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[11]  D. Elworthy ASYMPTOTIC METHODS IN THE THEORY OF STOCHASTIC DIFFERENTIAL EQUATIONS , 1992 .

[12]  Jie Tian,et al.  Adaptive state-feedback stabilization of high-order stochastic systems with nonlinear parameterization , 2009, Autom..

[13]  Licheng Jiao,et al.  Finite-time stability theorem of stochastic nonlinear systems , 2010, Autom..

[14]  Suiyang Khoo,et al.  Comments on "Finite-time stability theorem of stochastic nonlinear systems" [Automatica 46 (2010) 2105-2108] , 2011, Autom..

[15]  S. Bhat,et al.  Continuous finite-time stabilization of the translational and rotational double integrators , 1998, IEEE Trans. Autom. Control..

[16]  T. Runolfsson The equivalence between infinite-horizon optimal control of stochastic systems with exponential-of-integral performance index and stochastic differential games , 1994, IEEE Trans. Autom. Control..

[17]  Licheng Jiao,et al.  Authors' reply to "Comments on 'Finite-time stability theorem of stochastic nonlinear systems [Automatica 46 (2010) 2105-2108]"' , 2011, Autom..

[18]  M. Mariton,et al.  Output feedback for a class of linear systems with stochastic jump parameters , 1985 .

[19]  Zhong-Ping Jiang,et al.  Decentralized adaptive output-feedback stabilization for large-scale stochastic nonlinear systems , 2007, Autom..

[20]  H. Chizeck,et al.  Controllability, stabilizability, and continuous-time Markovian jump linear quadratic control , 1990 .

[21]  Zhihong Man,et al.  Finite-time stability and instability of stochastic nonlinear systems , 2011, Autom..

[22]  Miroslav Krstic,et al.  Stabilization of stochastic nonlinear systems driven by noise of unknown covariance , 2001, IEEE Trans. Autom. Control..

[23]  Yiguang Hong,et al.  Adaptive finite-time control of nonlinear systems with parametric uncertainty , 2006, IEEE Transactions on Automatic Control.

[24]  Zidong Wang,et al.  Exponential Stabilization of a Class of Stochastic System With Markovian Jump Parameters and Mode-Dependent Mixed Time-Delays , 2010, IEEE Transactions on Automatic Control.

[25]  Patrick Florchinger,et al.  Global stabilization of cascade stochastic systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[26]  Eduardo Sontag A universal construction of Artstein's theorem on nonlinear stabilization , 1989 .

[27]  Yiguang Hong,et al.  Finite-time stabilization and stabilizability of a class of controllable systems , 2002, Syst. Control. Lett..

[28]  M. Krstić,et al.  Stochastic nonlinear stabilization—II: inverse optimality , 1997 .

[29]  T. Basar,et al.  Backstepping controller design for nonlinear stochastic systems under a risk-sensitive cost criterion , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[30]  Zhihong Man,et al.  Finite-time stabilization of stochastic nonlinear systems in strict-feedback form , 2013, Autom..

[31]  Wei Lin,et al.  Global finite-time stabilization of a class of uncertain nonlinear systems , 2005, Autom..

[32]  L. Grujic On practical stability , 1973 .

[33]  M. K. Ghosh,et al.  Ergodic Control of Switching Diffusions , 1997 .

[34]  Xin Yu,et al.  Output Feedback Regulation of Stochastic Nonlinear Systems With Stochastic iISS Inverse Dynamics , 2010, IEEE Transactions on Automatic Control.

[35]  Ping Zhao,et al.  Practical stability, controllability and optimal control of stochastic Markovian jump systems with time-delays , 2008, Autom..

[36]  P. Florchinger A universal formula for the stabilization of control stochastic differential equations , 1993 .

[37]  Xue‐Jun Xie,et al.  Backstepping controller design for a class of stochastic nonlinear systems with Markovian switching , 2008, CCC 2008.

[38]  X. Mao Stability of stochastic differential equations with Markovian switching , 1999 .

[39]  Xie Jing Finite-time Stabilization of a Class of Nonlinear Systems , 2008 .

[40]  M. Krstić,et al.  Stochastic nonlinear stabilization—I: a backstepping design , 1997 .

[41]  Fangzheng Gao,et al.  Finite-time stabilization of stochastic nonholonomic systems , 2012, Proceedings of the 31st Chinese Control Conference.

[42]  M. Mariton,et al.  Jump Linear Systems in Automatic Control , 1992 .

[43]  P. Florchinger Lyapunov-Like Techniques for Stochastic Stability , 1995 .