Parallel image restoration using surrogate constraint methods

When formulated as a system of linear inequalities, the image restoration problem yields huge, unstructured, sparse matrices even for images of small size. To solve the image restoration problem, we use the surrogate constraint methods that can work efficiently for large problems. Among variants of the surrogate constraint method, we consider a basic method performing a single block projection in each step and a coarse-grain parallel version making simultaneous block projections. Using several state-of-the-art partitioning strategies and adopting different communication models, we develop competing parallel implementations of the two methods. The implementations are evaluated based on the per iteration performance and on the overall performance. The experimental results on a PC cluster reveal that the proposed parallelization schemes are quite beneficial.

[1]  James G. Nagy,et al.  Fast iterative image restoration with a spatially varying PSF , 1997, Optics & Photonics.

[2]  Mustafa Ç. Pinar,et al.  The Parallel Surrogate Constraint Approach to the Linear Feasibility Problem , 1996, PARA.

[3]  Ümit V. Çatalyürek,et al.  Hypergraph-Partitioning-Based Decomposition for Parallel Sparse-Matrix Vector Multiplication , 1999, IEEE Trans. Parallel Distributed Syst..

[4]  James G. Nagy,et al.  Iterative Methods for Image Deblurring: A Matlab Object-Oriented Approach , 2004, Numerical Algorithms.

[5]  sadi Aksun,et al.  Hypergraph Models for Sparse Matrix Partitioning and Reordering , 1999 .

[6]  J. Nagy,et al.  Steepest Descent, CG, and Iterative Regularization of Ill-Posed Problems , 2003 .

[7]  Bora Uçar,et al.  Encapsulating Multiple Communication-Cost Metrics in Partitioning Sparse Rectangular Matrices for Parallel Matrix-Vector Multiplies , 2004, SIAM J. Sci. Comput..

[8]  George Karypis,et al.  Multilevel Hypergraph Partitioning , 2003 .

[9]  Reginald L. Lagendijk,et al.  Iterative Identification and Restoration of Images (The International Series in Engineering and Computer Science) , 2001 .

[10]  Y. Censor,et al.  Parallel Optimization: Theory, Algorithms, and Applications , 1997 .

[11]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[12]  John N. Shadid,et al.  Parallel sparse matrix vector multiply software for matrices with data locality , 1998 .

[13]  Ümit V. Çatalyürek Hypergraph models for sparse matrix partitioning and reordering , 1999 .

[14]  J. G. Lewis,et al.  Distributed memory matrix-vector multiplication and conjugate gradient algorithms , 1993, Supercomputing '93.

[15]  Tamara G. Kolda,et al.  Graph partitioning models for parallel computing , 2000, Parallel Comput..

[16]  Dhabaleswar K. Panda,et al.  All-to-all broadcast on switch-based clusters of workstations , 1999, Proceedings 13th International Parallel Processing Symposium and 10th Symposium on Parallel and Distributed Processing. IPPS/SPDP 1999.

[17]  George Karypis,et al.  Multilevel Algorithms for Multi-Constraint Hypergraph Partitioning , 1999 .

[18]  Florin Popentiu,et al.  Iterative identification and restoration of images , 1993, Comput. Graph..

[19]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[20]  J.G. Lewis,et al.  Matrix-vector multiplication and conjugate gradient algorithms on distributed memory computers , 1994, Proceedings of IEEE Scalable High Performance Computing Conference.

[21]  George Karypis,et al.  A Software Package for Partitioning Unstructured Graphs , Partitioning Meshes , and Computing Fill-Reducing Orderings of Sparse Matrices Version 5 . 0 , 1998 .

[22]  Vipin Kumar,et al.  Multilevel Algorithms for Multi-Constraint Graph Partitioning , 1998, Proceedings of the IEEE/ACM SC98 Conference.

[23]  K. G. Murty,et al.  New iterative methods for linear inequalities , 1992 .

[24]  Boris Polyak,et al.  The method of projections for finding the common point of convex sets , 1967 .

[25]  Y. Censor,et al.  Parallel Optimization:theory , 1997 .

[26]  Ümit V. Çatalyürek,et al.  Decomposing Irregularly Sparse Matrices for Parallel Matrix-Vector Multiplication , 1996, IRREGULAR.

[27]  Steven J. Plimpton,et al.  An Efficient Parallel Algorithm for Matrix-Vector Multiplication , 1995, Int. J. High Speed Comput..

[28]  George Karypis,et al.  Introduction to Parallel Computing , 1994 .

[29]  Greg Burns,et al.  LAM: An Open Cluster Environment for MPI , 2002 .

[30]  Ümit V. Çatalyürek,et al.  A Hypergraph-Partitioning Approach for Coarse-Grain Decomposition , 2001, ACM/IEEE SC 2001 Conference (SC'01).

[31]  Vipin Kumar,et al.  Introduction to Parallel Computing , 1994 .

[32]  Tamara G. Kolda,et al.  Partitioning Rectangular and Structurally Unsymmetric Sparse Matrices for Parallel Processing , 1999, SIAM J. Sci. Comput..

[33]  Hakan Özaktaş Algorithms for linear and convex feasibility problems: A brief study of iterative projection, localization and subgradient methods , 1998 .

[34]  Y. Censor,et al.  New methods for linear inequalities , 1982 .

[35]  Dianne P. O'Leary,et al.  Restoring Images Degraded by Spatially Variant Blur , 1998, SIAM J. Sci. Comput..

[36]  Thomas Lengauer,et al.  Combinatorial algorithms for integrated circuit layout , 1990, Applicable theory in computer science.

[37]  M. Hanke Conjugate gradient type methods for ill-posed problems , 1995 .

[38]  Mustafa Akgül,et al.  Restoration of space-variant global blurs caused by severe camera movements and coordinate distortions , 1998 .