An overview of electrospun nanofibers and their application in energy storage, sensors and wearable/flexible electronics

Wearable and flexible electronics are currently a highly demanded and passionate topic of research owing to their excellent combination of related base functions with stretchability and foldability. Textiles are a universal interface and ideal substrate for the integration of nanomaterials, electronics, and optical devices. Smart/e-textiles are fabrics that have been designed and developed with new technologies that provide benefits to the wearer with increased functionality. The rapid development of technology in smart clothing has opened new innovations and is leading to promising applications, such as the ability to communicate with other devices, conduct energy, self-powered sensing, and safeguarding the user from environmental hazards. This review article focuses on the recent developments in the field of smart/e-textiles and mainly gives attention to electrospun nanofiber-based materials and methods used in wearable/flexible electronics, sensors and energy storage.

[1]  A. Chambers,et al.  Hydrogen Storage in Graphite Nanofibers , 1998 .

[2]  J. Deitzel,et al.  The effect of processing variables on the morphology of electrospun nanofibers and textiles , 2001 .

[3]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[4]  J. Hwang,et al.  Synthesis and hydrogen storage of carbon nanofibers , 2002 .

[5]  Sungmee Park,et al.  Smart Textiles: Wearable Electronic Systems , 2003 .

[6]  Paula Gould,et al.  Textiles gain intelligence , 2003 .

[7]  Carla Hertleer,et al.  Smart clothing: a new life , 2004 .

[8]  I. Chronakis,et al.  Polymer nanofibers assembled by electrospinning , 2003 .

[9]  Kun-Hong Lee,et al.  Electrical properties of electrical double layer capacitors with integrated carbon nanotube electrodes , 2004 .

[10]  P Lukowicz,et al.  Wearable Systems for Health Care Applications , 2004, Methods of Information in Medicine.

[11]  B. C. Kim,et al.  Electrospun polyacrylonitrile-based carbon nanofibers and their hydrogen storages , 2005 .

[12]  T. Lim,et al.  An Introduction to Electrospinning and Nanofibers , 2005 .

[13]  H. Mattila Intelligent textiles and clothing , 2006 .

[14]  Yong Jung Kim,et al.  Fabrication of Electrospinning‐Derived Carbon Nanofiber Webs for the Anode Material of Lithium‐Ion Secondary Batteries , 2006 .

[15]  P. Supaphol,et al.  Mechanical and electro-rheological properties of electrospun poly(vinyl alcohol) nanofibre mats filled with carbon black nanoparticles , 2007 .

[16]  Juan P. Hinestroza Can nanotechnology be fashionable , 2007 .

[17]  D. Y. Kim,et al.  Graphite nanofibers prepared from catalytic graphitization of electrospun poly(vinylidene fluoride) nanofibers and their hydrogen storage capacity , 2007 .

[18]  A. Züttel,et al.  Complex hydrides for hydrogen storage. , 2007, Chemical reviews.

[19]  S. Ramakrishna,et al.  Electrospun nanofibers in energy and environmental applications , 2008 .

[20]  J. Hinestroza,et al.  Smart textiles: tough cotton. , 2008, Nature nanotechnology.

[21]  Jaephil Cho,et al.  Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries. , 2008, Angewandte Chemie.

[22]  Yan Yu,et al.  Electrospinning synthesis of C/Fe3O4 composite nanofibers and their application for high performance lithium-ion batteries , 2008 .

[23]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[24]  David Hui,et al.  Modern Applications of Nanotechnology in Textiles , 2008 .

[25]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[26]  Yan Yu,et al.  Tin nanoparticles encapsulated in porous multichannel carbon microtubes: preparation by single-nozzle electrospinning and application as anode material for high-performance Li-based batteries. , 2009, Journal of the American Chemical Society.

[27]  T. Greeshma,et al.  The Influence of Individual Phases on Piezoelectric Coefficient of PZT-PVdF Composites , 2009 .

[28]  Songting Tan,et al.  Nickel/carbon nanofibers composite electrodes as supercapacitors prepared by electrospinning , 2009 .

[29]  Yongsheng Chen,et al.  SUPERCAPACITOR DEVICES BASED ON GRAPHENE MATERIALS , 2009 .

[30]  Yan Yu,et al.  Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibers as an anode material in lithium-based batteries. , 2009, Angewandte Chemie.

[31]  T. Gerdes,et al.  Carbon–fiber–silicon-nanocomposites for lithium-ion battery anodes by microwave plasma chemical vapor deposition , 2009 .

[32]  Yi Cui,et al.  Carbon-silicon core-shell nanowires as high capacity electrode for lithium ion batteries. , 2009, Nano letters.

[33]  Liwen Ji,et al.  Electrospun carbon nanofibers containing silicon particles as an energy-storage medium , 2009 .

[34]  X. Zhang,et al.  Fabrication of porous carbon/Si composite nanofibers as high-capacity battery electrodes , 2009 .

[35]  Xianlong Liu,et al.  High performance silicon carbon composite anode materials for lithium ion batteries , 2009 .

[36]  Zhong Lin Wang,et al.  Self-powered nanowire devices. , 2010, Nature nanotechnology.

[37]  T. Matsuura,et al.  Recent Progress in the Preparation, Characterization, and Applications of Nanofibers and Nanofiber Membranes via Electrospinning/Interfacial Polymerization , 2010 .

[38]  Haoshen Zhou,et al.  Synthesis of triaxial LiFePO4 nanowire with a VGCF core column and a carbon shell through the electrospinning method. , 2010, ACS applied materials & interfaces.

[39]  Yunlong Zhao,et al.  Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. , 2010, Nano letters.

[40]  P. Adelhelm,et al.  Nanosizing and nanoconfinement: new strategies towards meeting hydrogen storage goals. , 2010, ChemSusChem.

[41]  Donald J. Siegel,et al.  High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery. , 2010, Chemical Society reviews.

[42]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[43]  Xiaoping Yang,et al.  Reticular Sn nanoparticle-dispersed PAN-based carbon nanofibers for anode material in rechargeable lithium-ion batteries , 2010 .

[44]  Chusheng Chen,et al.  A novel carbon–silicon composite nanofiber prepared via electrospinning as anode material for high energy-density lithium ion batteries , 2010 .

[45]  Zhong Lin Wang,et al.  Hybrid nanogenerator for concurrently harvesting biomechanical and biochemical energy. , 2010, ACS nano.

[46]  Pengjian Zuo,et al.  Nanosized core/shell silicon@carbon anode material for lithium ion batteries with polyvinylidene fluoride as carbon source , 2010 .

[47]  Xinggui Zhou,et al.  Carbon Nanofiber-Supported Ru Catalysts for Hydrogen Evolution by Ammonia Decomposition , 2010 .

[48]  Il-Doo Kim,et al.  Facile Synthesis of Highly Conductive Platinum Nanofiber Mats as Conducting Core for High Rate Redox Supercapacitor , 2010 .

[49]  S. Kundu,et al.  Electrospinning: a fascinating fiber fabrication technique. , 2010, Biotechnology advances.

[50]  Inmaculada Zamora,et al.  Influence of the rated power in the performance of different proton exchange membrane (PEM) fuel cells , 2010 .

[51]  G. Zhu,et al.  Muscle‐Driven In Vivo Nanogenerator , 2010, Advanced materials.

[52]  Mariah D. Woodroof,et al.  Electrodeposited MnOx/carbon nanofiber composites for use as anode materials in rechargeable lithium-ion batteries , 2010 .

[53]  C. Park,et al.  Effects of surrounding confinements of Si nanoparticles on Si-based anode performance for lithium ion batteries , 2010 .

[54]  F. Kang,et al.  Sn/C non-woven film prepared by electrospinning as anode materials for lithium ion batteries , 2010 .

[55]  S. Mecking,et al.  Nanoparticles of conjugated polymers. , 2010, Chemical reviews.

[56]  Liwei Lin,et al.  Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. , 2010, Nano letters.

[57]  A. Best,et al.  Conducting-polymer-based supercapacitor devices and electrodes , 2011 .

[58]  Yan Yu,et al.  Electrospinning of highly electroactive carbon-coated single-crystalline LiFePO4 nanowires. , 2011, Angewandte Chemie.

[59]  J. Jur,et al.  Atomic Layer Deposition of Conductive Coatings on Cotton, Paper, and Synthetic Fibers: Conductivity Analysis and Functional Chemical Sensing Using “All‐Fiber” Capacitors , 2011 .

[60]  Eun Kyung Lee,et al.  Porous PVDF as effective sonic wave driven nanogenerators. , 2011, Nano letters.

[61]  Zhong Lin Wang,et al.  Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator. , 2011, ACS nano.

[62]  Claudia Weidenthaler,et al.  Solid-state hydrogen storage for mobile applications: Quo Vadis? , 2011 .

[63]  A. Chinnappan,et al.  Preparation of PVDF nanofiber composites for hydrogen generation from sodium borohydride , 2011 .

[64]  Xin Zhao,et al.  The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices. , 2011, Nanoscale.

[65]  Hern Kim,et al.  Fabrication of Poly(vinylidene fluoride) (PVDF) Nanofibers Containing Nickel Nanoparticles as Future Energy Server Materials. , 2011, Science of advanced materials.

[66]  A. Bonfiglio,et al.  Organic electronics on natural cotton fibres , 2011 .

[67]  H. A. Toprakci,et al.  Fabrication and electrochemical characteristics of electrospun LiFePO4/carbon composite fibers for lithium-ion batteries , 2011 .

[68]  Tong Lin,et al.  Electrical power generator from randomly oriented electrospun poly(vinylidene fluoride) nanofibre membranes , 2011 .

[69]  M. Fichtner Nanoconfinement effects in energy storage materials. , 2011, Physical chemistry chemical physics : PCCP.

[70]  P. Jena Materials for Hydrogen Storage: Past, Present, and Future , 2011 .

[71]  L. Nyholm,et al.  Toward Flexible Polymer and Paper‐Based Energy Storage Devices , 2011, Advanced materials.

[72]  A. Laforgue All-textile flexible supercapacitors using electrospun poly(3,4-ethylenedioxythiophene) nanofibers , 2011 .

[73]  V. Aravindan,et al.  Morphology, structure and electrochemical properties of single phase electrospun vanadium pentoxide nanofibers for lithium ion batteries , 2011 .

[74]  Yuanjin Zheng,et al.  Low-Power Ultrawideband Wireless Telemetry Transceiver for Medical Sensor Applications , 2011, IEEE Transactions on Biomedical Engineering.

[75]  E. Laukhina,et al.  Highly piezoresistive textiles based on a soft conducting charge transfer salt , 2011 .

[76]  F. Besenbacher,et al.  Nanoconfined hydrides for energy storage. , 2011, Nanoscale.

[77]  F. Kang,et al.  A film of porous carbon nanofibers that contain Sn/SnOx nanoparticles in the pores and its electrochemical performance as an anode material for lithium ion batteries , 2011 .

[78]  Zhong Lin Wang,et al.  Functional electrical stimulation by nanogenerator with 58 V output voltage. , 2012, Nano letters.

[79]  W. Park,et al.  Cobalt ion-mediated cysteine detection with a hyperbranched conjugated polyelectrolyte as a new sensing platform. , 2012, Macromolecular rapid communications.

[80]  A. Baeumner,et al.  Recent progress in the design of nanofiber-based biosensing devices. , 2012, Lab on a chip.

[81]  A. Chinnappan,et al.  Nanocatalyst: Electrospun nanofibers of PVDF – Dicationic tetrachloronickelate (II) anion and their effect on hydrogen generation from the hydrolysis of sodium borohydride , 2012 .

[82]  J. Volakis,et al.  Embroidered Conductive Fibers on Polymer Composite for Conformal Antennas , 2012, IEEE Transactions on Antennas and Propagation.

[83]  Yuyan Shao,et al.  Nanostructured carbon for energy storage and conversion , 2012 .

[84]  L. V. Pieterson,et al.  Smart textiles: Challenges and opportunities , 2012 .

[85]  Zhong‐Lin Wang,et al.  Progress in Piezotronics and Piezo‐Phototronics , 2012, Advanced materials.

[86]  Yi Cui,et al.  Energy and environmental nanotechnology in conductive paper and textiles , 2012 .

[87]  Power Generation from Randomly Oriented Electrospun Nanofiber Membranes , 2012 .

[88]  Yu Ding,et al.  CeO2 nanofibers for in situ O2 and CO sensing in harsh environments , 2012 .

[89]  Kuan-chao Chen,et al.  Improving Piezoelectric Nanogenerator Comprises ZnO Nanowires by Bending the Flexible PET Substrate at Low Vibration Frequency , 2012 .

[90]  Liwei Lin,et al.  Piezoelectric nanofibers for energy scavenging applications , 2012 .

[91]  K. Haenen,et al.  Design and fabrication of piezoresistive strain gauges based on nanocrystalline diamond layers , 2012 .

[92]  Qingwen Li,et al.  Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors. , 2013, ACS applied materials & interfaces.

[93]  Xinhua Li,et al.  Flexible supercapacitor based on MnO2 nanoparticles via electrospinning , 2013 .

[94]  M. Alcoutlabi,et al.  Electrospun nanofiber‐coated separator membranes for lithium‐ion rechargeable batteries , 2013 .

[95]  E. Xie,et al.  An overview of carbon materials for flexible electrochemical capacitors. , 2013, Nanoscale.

[96]  F. Rius,et al.  Potentiometric sensors using cotton yarns, carbon nanotubes and polymeric membranes. , 2013, The Analyst.

[97]  Y. Bando,et al.  Cable‐Type Supercapacitors of Three‐Dimensional Cotton Thread Based Multi‐Grade Nanostructures for Wearable Energy Storage , 2013, Advanced materials.

[98]  Y. Qiu,et al.  Heat treatment of electrospun Polyvinylidene fluoride fibrous membrane separators for rechargeable lithium-ion batteries , 2013 .

[99]  Yong Zhao,et al.  Electrospun nanofibrous mats absorbed with fatty acid eutectics as an innovative type of form-stable phase change materials for storage and retrieval of thermal energy , 2013 .

[100]  Zaiping Guo,et al.  Carbon‐Coated Li3N Nanofibers for Advanced Hydrogen Storage , 2013, Advanced materials.

[101]  S. H. Choy,et al.  Highly durable all-fiber nanogenerator for mechanical energy harvesting , 2013 .

[102]  J. Nichols,et al.  Tuning electronic structure via epitaxial strain in Sr2IrO4 thin films , 2013, 1302.0918.

[103]  Zhong Lin Wang,et al.  Engineering of efficiency limiting free carriers and an interfacial energy barrier for an enhancing piezoelectric generation , 2013 .

[104]  S. Ramakrishna,et al.  Electrospun polyaniline nanofibers web electrodes for supercapacitors , 2013 .

[105]  Shengjie Peng,et al.  Electrospun hierarchical CaCo2O4 nanofibers with excellent lithium storage properties. , 2013, Chemistry.

[106]  H. Ahn,et al.  Activated porous carbon nanofibers using Sn segregation for high-performance electrochemical capacitors , 2013 .

[107]  L. Jia,et al.  Pt nanoclusters stabilized by N-doped carbon nanofibers for hydrogen production from formic acid , 2013 .

[108]  X. Lou,et al.  Two-dimensional nanosheets for photoelectrochemical water splitting: Possibilities and opportunities , 2013 .

[109]  Y. Miao,et al.  High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning. , 2013, ACS applied materials & interfaces.

[110]  A. Merati,et al.  Piezoelectric electrospun nanofibrous materials for self-powering wearable electronic textiles applications , 2014, Journal of Polymer Research.

[111]  A. M. Shoushtari,et al.  Electrospun PMMA/AB nanofiber composites for hydrogen storage applications , 2014 .

[112]  Alessandro Chiolerio,et al.  Wearable Electronics and Smart Textiles: A Critical Review , 2014, Sensors.

[113]  X. Tao,et al.  Fiber‐Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications , 2014, Advanced materials.

[114]  N. Wu,et al.  Electrospun activated carbon nanofibers for supercapacitor electrodes , 2014 .

[115]  M. Gearing,et al.  Correction: Corrigendum: Tonic inhibition in dentate gyrus impairs long-term potentiation and memory in an Alzheimer’s disease model , 2014, Nature Communications.

[116]  Yongan Huang,et al.  Non-wrinkled, highly stretchable piezoelectric devices by electrohydrodynamic direct-writing. , 2014, Nanoscale.

[117]  Guangmin Zhou,et al.  Progress in flexible lithium batteries and future prospects , 2014 .

[118]  Byeong‐Su Kim,et al.  Electrospun nanofiber of hybrid manganese oxides for supercapacitor: Relevance to mixed inorganic interfaces , 2014 .

[119]  S. Ramakrishna,et al.  Exceptional performance of TiNb₂O₇ anode in all one-dimensional architecture by electrospinning. , 2014, ACS applied materials & interfaces.

[120]  B. Fang,et al.  Facile fabrication of mesoporous carbon nanofibers with unique hierarchical nanoarchitecture for electrochemical hydrogen storage , 2014 .

[121]  L. Castano,et al.  Smart fabric sensors and e-textile technologies: a review , 2014 .

[122]  Chao Gao,et al.  Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics , 2014, Nature Communications.

[123]  D. Kang,et al.  Conformal coating of ultrathin Ni(OH)2 on ZnO nanowires grown on textile fiber for efficient flexible energy storage devices , 2014 .

[124]  Li Lu,et al.  Facile synthesis and advanced performance of Ni(OH) 2 /CNTs nanoflake composites on supercapacitor applications , 2014 .

[125]  Jun Zhou,et al.  Fiber-based generator for wearable electronics and mobile medication. , 2014, ACS nano.

[126]  Zhengping Zhou,et al.  Electrospun carbon nanofibers surface-grown with carbon nanotubes and polyaniline for use as high-performance electrode materials of supercapacitors , 2014 .

[127]  T. Lee,et al.  Conjugated polymer dots-on-electrospun fibers as a fluorescent nanofibrous sensor for nerve gas stimulant. , 2014, ACS applied materials & interfaces.

[128]  C. Zhi,et al.  From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles. , 2015, ACS nano.

[129]  Hemlata J. Sharma,et al.  Electrospun Nanofibers of Conducting Polyaniline/Al-SnO2 Composites for Hydrogen Sensing Applications☆ , 2015 .

[130]  A. Chinnappan,et al.  Fabrication of ionic liquid/polymer nanoscale networks by electrospinning and chemical cross-linking and their application in hydrogen generation from the hydrolysis of NaBH4 , 2015 .

[131]  N. G. Shimpi,et al.  Performance of hybrid nanostructured conductive cotton materials as wearable devices: an overview of materials, fabrication, properties and applications , 2015 .

[132]  Poulomi Roy,et al.  Nanostructured anode materials for lithium ion batteries , 2015 .

[133]  Henrietta W. Langmi,et al.  Electrospun MOF nanofibers as hydrogen storage media , 2015 .

[134]  Xinhai Yu,et al.  Engineering Pt/carbon-nanofibers/carbon-paper composite towards highly efficient catalyst for hydrogen evolution from liquid organic hydride , 2015 .

[135]  Yongan Huang,et al.  Electrohydrodynamically Printed, Flexible Energy Harvester Using In Situ Poled Piezoelectric Nanofibers , 2015 .

[136]  F. Ko,et al.  Highly piezoresistive compliant nanofibrous sensors for tactile and epidermal electronic applications , 2015 .

[137]  Shouxiang Jiang,et al.  Graphene nanoribbon coated flexible and conductive cotton fabric , 2015 .

[138]  I. A. Goldthorpe,et al.  Silver nanowire coated threads for electrically conductive textiles , 2015 .

[139]  Ian Gibson,et al.  Design and Fabrication of a Capacitance Based Wearable Pressure Sensor Using E-textiles , 2015 .

[140]  Jiaqiang Huang,et al.  Electrospun Carbon Nanofibers with in Situ Encapsulated Co₃O₄ Nanoparticles as Electrodes for High-Performance Supercapacitors. , 2015, ACS applied materials & interfaces.

[141]  A wearable and highly sensitive CO sensor with a macroscopic polyaniline nanofiber membrane , 2015 .

[142]  Qianwei Ding,et al.  Flexible Hybrid Membranes with Ni(OH)2 Nanoplatelets Vertically Grown on Electrospun Carbon Nanofibers for High-Performance Supercapacitors. , 2015, ACS applied materials & interfaces.

[143]  Xiluan Wang,et al.  Flexible graphene devices related to energy conversion and storage , 2015 .

[144]  Yichun Liu,et al.  Flexible solid-state supercapacitors based on freestanding nitrogen-doped porous carbon nanofibers derived from electrospun polyacrylonitrile@polyaniline nanofibers , 2016 .

[145]  Yongan Huang,et al.  Energy Harvesters for Wearable and Stretchable Electronics: From Flexibility to Stretchability , 2016, Advanced materials.

[146]  Tae Whan Kim,et al.  Wearable Electricity Generators Fabricated Utilizing Transparent Electronic Textiles Based on Polyester/Ag Nanowires/Graphene Core-Shell Nanocomposites. , 2016, ACS Nano.

[147]  A. Khademhosseini,et al.  Nanotechnology in Textiles. , 2016, ACS nano.

[148]  Mira Park,et al.  Environment friendly, transparent nanofiber textiles consolidated with high efficiency PLEDs for wearable electronics , 2016 .

[149]  Yichun Liu,et al.  Electrospun Carbon Nanofibers/Carbon Nanotubes/Polyaniline Ternary Composites with Enhanced Electrochemical Performance for Flexible Solid-State Supercapacitors , 2016 .

[150]  D. Mandal,et al.  Design of In Situ Poled Ce(3+)-Doped Electrospun PVDF/Graphene Composite Nanofibers for Fabrication of Nanopressure Sensor and Ultrasensitive Acoustic Nanogenerator. , 2016, ACS applied materials & interfaces.

[151]  S. Ramakrishna,et al.  Multi-functional electrospun nanofibres for advances in tissue regeneration, energy conversion & storage, and water treatment. , 2016, Chemical Society reviews.

[152]  Z. Lou,et al.  Flexible in-plane microsupercapacitors with electrospun NiFe2O4 nanofibers for portable sensing applications. , 2016, Nanoscale.

[153]  Mingjun Hu,et al.  A facile way of fabricating a flexible and conductive cotton fabric , 2016 .

[154]  Baozhang Li,et al.  Wearable piezoelectric device assembled by one-step continuous electrospinning , 2016 .

[155]  S. Adams,et al.  Electrospun carbon nanofibers and their hybrid composites as advanced materials for energy conversion and storage , 2016 .

[156]  Masoud Latifi,et al.  Overview of wearable electronics and smart textiles , 2017 .

[157]  Hongnan Zhang,et al.  Flexible and Conductive Nanofiber-Structured Single Yarn Sensor for Smart Wearable Devices , 2017 .

[158]  Fanny Boubée de Gramont,et al.  Highly stretchable electrospun conducting polymer nanofibers , 2017 .