Denoising of diffusion MRI using random matrix theory

We introduce and evaluate a post-processing technique for fast denoising of diffusion-weighted MR images. By exploiting the intrinsic redundancy in diffusion MRI using universal properties of the eigenspectrum of random covariance matrices, we remove noise-only principal components, thereby enabling signal-to-noise ratio enhancements. This yields parameter maps of improved quality for visual, quantitative, and statistical interpretation. By studying statistics of residuals, we demonstrate that the technique suppresses local signal fluctuations that solely originate from thermal noise rather than from other sources such as anatomical detail. Furthermore, we achieve improved precision in the estimation of diffusion parameters and fiber orientations in the human brain without compromising the accuracy and spatial resolution.

[1]  Alan Connelly,et al.  MRtrix: Diffusion tractography in crossing fiber regions , 2012, Int. J. Imaging Syst. Technol..

[2]  I. Johnstone High Dimensional Statistical Inference and Random Matrices , 2006, math/0611589.

[3]  Cheng Guan Koay,et al.  Analytically exact correction scheme for signal extraction from noisy magnitude MR signals. , 2006, Journal of magnetic resonance.

[4]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[5]  P. Batchelor,et al.  International Society for Magnetic Resonance in Medicine , 1997 .

[6]  Peter J Hellyer,et al.  Human brain mapping , 2012, Nature Methods.

[7]  Jan Sijbers,et al.  Probabilistic fiber tracking using the residual bootstrap with constrained spherical deconvolution , 2011, Human brain mapping.

[8]  James M. Noras,et al.  Noise Variance Estimation for Spectrum Sensing in Cognitive Radio Networks , 2014 .

[9]  Derek K. Jones,et al.  “Squashing peanuts and smashing pumpkins”: How noise distorts diffusion‐weighted MR data , 2004, Magnetic resonance in medicine.

[10]  Mehran Ebrahimi,et al.  Efficient nonlocal-means denoising using the SVD , 2008, 2008 15th IEEE International Conference on Image Processing.

[11]  L. Wald,et al.  A 64‐channel 3T array coil for accelerated brain MRI , 2013, Magnetic resonance in medicine.

[12]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[13]  M. Horsfield,et al.  Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[14]  Nassir Navab,et al.  Medical Image Computing and Computer-Assisted Intervention – MICCAI 2013 , 2013, Lecture Notes in Computer Science.

[15]  Glyn Johnson,et al.  Random Matrix Theory-based noise reduction for dynamic imaging : Application to DCE-MRI , 2012 .

[16]  Pierrick Coupé,et al.  Author manuscript, published in "Journal of Magnetic Resonance Imaging 2010;31(1):192-203" DOI: 10.1002/jmri.22003 Adaptive Non-Local Means Denoising of MR Images with Spatially Varying Noise Levels , 2010 .

[17]  Max A. Viergever,et al.  Recursive calibration of the fiber response function for spherical deconvolution of diffusion MRI data , 2014, NeuroImage.

[18]  D. Collins,et al.  Computed diffusion-weighted MR imaging may improve tumor detection. , 2011, Radiology.

[19]  Eric Achten,et al.  Optimal Experimental Design for Diffusion Kurtosis Imaging , 2010, IEEE Transactions on Medical Imaging.

[20]  B. Jeurissen,et al.  Maximum likelihood estimation-based denoising of magnetic resonance images using restricted local neighborhoods. , 2011, Physics in medicine and biology.

[21]  H. Hotelling Analysis of a complex of statistical variables into principal components. , 1933 .

[22]  Aleksandra Pizurica,et al.  The effect of Gibbs ringing artifacts on measures derived from diffusion MRI , 2015, NeuroImage.

[23]  Yu Ding,et al.  A method to assess spatially variant noise in dynamic MR image series , 2010, Magnetic resonance in medicine.

[24]  Arnak S. Dalalyan,et al.  Image denoising with patch based PCA: local versus global , 2011, BMVC.

[25]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[26]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[27]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[28]  Julien Cohen-Adad,et al.  Pushing the limits of in vivo diffusion MRI for the Human Connectome Project , 2013, NeuroImage.

[29]  P. Basser,et al.  Statistical artifacts in diffusion tensor MRI (DT‐MRI) caused by background noise , 2000, Magnetic resonance in medicine.

[30]  Alessandro Foi,et al.  Noise estimation and removal in MR imaging: The variance-stabilization approach , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[31]  J. Sijbers,et al.  Constrained maximum likelihood estimation of the diffusion kurtosis tensor using a Rician noise model , 2011, Magnetic resonance in medicine.

[32]  Derek K. Jones,et al.  RESTORE: Robust estimation of tensors by outlier rejection , 2005, Magnetic resonance in medicine.

[33]  Jelle Veraart,et al.  Gibbs ringing in diffusion MRI , 2016, Magnetic resonance in medicine.

[34]  J M Taveras,et al.  Magnetic Resonance in Medicine , 1991, The Western journal of medicine.

[35]  Derek K. Jones,et al.  Precision and Accuracy in Diffusion Tensor Magnetic Resonance Imaging , 2010, Topics in magnetic resonance imaging : TMRI.

[36]  Mark H Spatz,et al.  A 64 channel 3T array coil for highly accelerated fetal imaging at 22 weeks of pregnancy , 2017 .

[37]  Jens Frahm,et al.  Suppression of MRI Truncation Artifacts Using Total Variation Constrained Data Extrapolation , 2008, Int. J. Biomed. Imaging.

[38]  Derek K. Jones,et al.  Investigating the prevalence of complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging , 2013, Human brain mapping.

[39]  Derek K. Jones,et al.  Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI , 2003, Magnetic resonance in medicine.

[40]  José V. Manjón,et al.  MRI denoising using Non-Local Means , 2008, Medical Image Anal..

[41]  Jan Sijbers,et al.  Weighted linear least squares estimation of diffusion MRI parameters: Strengths, limitations, and pitfalls , 2013, NeuroImage.

[42]  J. Veraart,et al.  Degeneracy in model parameter estimation for multi‐compartmental diffusion in neuronal tissue , 2016, NMR in biomedicine.

[43]  J. Bouchaud,et al.  Noise Dressing of Financial Correlation Matrices , 1998, cond-mat/9810255.

[44]  D. Louis Collins,et al.  Diffusion Weighted Image Denoising Using Overcomplete Local PCA , 2013, PloS one.

[45]  T. Pock,et al.  Second order total generalized variation (TGV) for MRI , 2011, Magnetic resonance in medicine.

[46]  Brian Hansen,et al.  Experimental considerations for fast kurtosis imaging , 2016, Magnetic resonance in medicine.

[47]  A. Leemans,et al.  Comprehensive framework for accurate diffusion MRI parameter estimation , 2013, Magnetic resonance in medicine.

[48]  Brian Hansen,et al.  Experimentally and computationally fast method for estimation of a mean kurtosis , 2013, Magnetic resonance in medicine.

[49]  V. Marčenko,et al.  DISTRIBUTION OF EIGENVALUES FOR SOME SETS OF RANDOM MATRICES , 1967 .

[50]  J. Johnson Thermal Agitation of Electricity in Conductors , 1927, Nature.

[51]  J. Sijbers,et al.  More accurate estimation of diffusion tensor parameters using diffusion kurtosis imaging , 2011, Magnetic resonance in medicine.

[52]  Paul Suetens,et al.  Feasibility and Advantages of Diffusion Weighted Imaging Atlas Construction in Q-Space , 2011, MICCAI.

[53]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[54]  W. Hoge,et al.  Statistical noise analysis in GRAPPA using a parametrized noncentral Chi approximation model , 2011, Magnetic resonance in medicine.

[55]  Anirvan M. Sengupta,et al.  Distributions of singular values for some random matrices. , 1997, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[56]  Pierrick Coupé,et al.  Fast Non Local Means Denoising for 3D MR Images , 2006, MICCAI.

[57]  Bibek Dhital,et al.  Gibbs‐ringing artifact removal based on local subvoxel‐shifts , 2015, Magnetic resonance in medicine.

[58]  Steen Moeller,et al.  Advances in diffusion MRI acquisition and processing in the Human Connectome Project , 2013, NeuroImage.

[59]  James S. Duncan,et al.  Medical Image Analysis , 1999, IEEE Pulse.

[60]  P. Bhattacharya Diffusion MRI: Theory, methods, and applications, Derek K. Jones (Ed.). Oxford University press (2011), $152.77 , 2012 .

[61]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[62]  J. Hogg Magnetic resonance imaging. , 1994, Journal of the Royal Naval Medical Service.

[63]  H. Nyquist Thermal Agitation of Electric Charge in Conductors , 1928 .

[64]  J. Sijbers,et al.  Nonlocal maximum likelihood estimation method for denoising multiple-coil magnetic resonance images. , 2012, Magnetic resonance imaging.

[65]  Jean-Michel Morel,et al.  A non-local algorithm for image denoising , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[66]  Jelle Veraart,et al.  Diffusion MRI noise mapping using random matrix theory , 2016, Magnetic resonance in medicine.

[67]  Pierrick Coupé,et al.  MRI noise estimation and denoising using non-local PCA , 2015, Medical Image Anal..