Design and performance of soft gamma-ray detector for NeXT mission

The soft gamma-ray detector (SGD) onboard the Japanese future high energy astrophysics mission (NeXT) is a Compton telescope with narrow field of view, which utilizes Compton kinematics to enhance its background rejection capabilities. It is realized as a hybrid semiconductor gamma-ray detector which consists of silicon and cadmium telluride (CdTe) detectors. It can detect photons in a wide energy band (0.05-1 MeV) at a background level of 5 times10-7 counts/s/cm2/keV; the silicon layers are required to improve the performance at a lower energy band (<0.3 MeV). Excellent energy resolution is the key feature of the SGD, allowing it to achieve both high angular resolution and good background rejection capability. An additional capability of the SGD, its ability to measure gamma-ray polarization, opens up a new window to study properties of astronomical objects. We will present the development of key technologies to realize the SGD: high quality CdTe, low noise front-end application-specific integrated circuit, and bump bonding technology. Energy resolutions of 1.7 keV (full-width at half-maximum) for CdTe pixel detectors and 1.1 keV for Si strip detectors have been measured. We also present the validation of Monte Carlo simulation used to evaluate the performance of the SGD

[1]  G. Weidenspointner,et al.  MGGPOD: a Monte Carlo suite for modelling instrumental backgrounds in γ-ray astronomy and its application to Wind/TGRS and INTEGRAL/SPI , 2004 .

[2]  Yasushi Fukazawa,et al.  Hard X-ray and γ-ray detectors for the NeXT mission , 2004 .

[3]  T. Takahashi,et al.  A prototype Si/CdTe Compton camera and the polarization measurement , 2004, IEEE Transactions on Nuclear Science.

[4]  D. Rogers,et al.  EGS4 code system , 1985 .

[5]  Yasushi Fukazawa,et al.  BGO readout with photodiodes as a soft gamma-ray detector at −30 ◦ C , 2005 .

[6]  Advanced Compton telescope designs and sn science , 2001, astro-ph/0110346.

[7]  Wayne Coburn,et al.  Overview of the nuclear Compton telescope , 2004 .

[8]  Tadayuki Takahashi,et al.  Development of an Si/CdTe semiconductor Compton telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[9]  Motohide Kokubun,et al.  Activation properties of Schottky CdTe diodes irradiated by 150 MeV protons , 2002 .

[10]  Goro Sato,et al.  High resolution CdTe detector and applications to imaging devices , 2000 .

[11]  Yasushi Fukazawa,et al.  Prototype of Compton camera using high resolution Si/CdTe detectors Si/CdTe Compton camera as a polarimeter , 2003, 2003 IEEE Nuclear Science Symposium. Conference Record (IEEE Cat. No.03CH37515).

[12]  Tadayuki Takahashi,et al.  Gamma-ray polarimetry with Compton Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[13]  Tadayuki Takahashi,et al.  Low-noise double-sided silicon strip detector for soft gamma-ray Compton camera , 2004, SPIE Astronomical Telescopes + Instrumentation.

[14]  Takamasa Yamagami,et al.  Newly developed low background hard X-ray/gamma-ray telescope with the well-type phoswich counters , 1992, IEEE Conference on Nuclear Science Symposium and Medical Imaging.

[15]  Yasushi Fukazawa,et al.  Performance of large-area avalanche photodiode for low-energy X-rays and γ-rays scintillation detection , 2003 .

[16]  M. Nomachi,et al.  Hard X-ray and Gamma-Ray Detectors for the NEXT mission , 2003 .

[17]  S. Gunji,et al.  Well-type phoswich counter for low-flux X-ray/ gamma-ray detection , 1992, Conference Record of the 1991 IEEE Nuclear Science Symposium and Medical Imaging Conference.

[18]  F. Schopper,et al.  The MEGA advanced Compton telescope project , 2001, astro-ph/0110129.

[19]  R. Marc Kippen,et al.  The GEANT low energy Compton scattering (GLECS) package for use in simulating advanced Compton telescopes , 2004 .

[20]  Tuneyoshi Kamae,et al.  Application of CdTe for the NeXT Mission , 2005 .

[21]  Y. Namito,et al.  Implementation of linearly-polarized photon scattering into the EGS4 code , 1993 .

[22]  Motohide Kokubun,et al.  Study of large area Hamamatsu avalanche photodiode in a γ-ray scintillation detector , 2005 .

[23]  Tadayuki Takahashi,et al.  Wide band X-ray Imager (WXI) and Soft Gamma-ray Detector (SGD) for the NeXT Mission , 2004, SPIE Astronomical Telescopes + Instrumentation.

[24]  T. Kamae,et al.  Prototype design of multiple Compton gamma-ray camera , 1988 .

[25]  Tadayuki Takahashi,et al.  Astro-E hard x-ray detector , 1996, Optics & Photonics.

[26]  Allen D. Zych,et al.  Development of the TIGRE Compton telescope for intermediate-energy gamma-ray astronomy , 2003 .

[27]  T. Takahashi,et al.  Si/CdTe semiconductor compton camera , 2005, IEEE Symposium Conference Record Nuclear Science 2004..

[28]  Tuneyoshi Kamae,et al.  Future Hard X-ray and Gamma-ray Observations , 2001 .

[29]  Roland Diehl,et al.  COMPTEL gamma-ray line analysis techniques , 1996, Optics & Photonics.

[30]  Tadayuki Takahashi,et al.  Low-noise double-sided silicon strip detector for multiple-compton gamma-ray telescope , 2002, SPIE Astronomical Telescopes + Instrumentation.

[31]  M. McConnell,et al.  Instrument description and performance of the Imaging Gamma-Ray Telescope COMPTEL aboard the Compton Gamma-Ray Observatory , 1993 .

[32]  Yasushi Fukazawa,et al.  Activation of the ASTRO-E hard X-ray detector in low Earth orbit , 1998 .

[33]  Hiroyasu Tajima Gamma-ray Polarimetry , 2003 .

[34]  Tadayuki Takahashi,et al.  High resolution CdTe detectors for the next-generation multi-Compton gamma-ray telescope , 2003, SPIE Astronomical Telescopes + Instrumentation.

[35]  G. Sato,et al.  Improvement of the CdTe diode detectors using a guard-ring electrode , 2004, IEEE Transactions on Nuclear Science.

[36]  R. Enomoto,et al.  A new method to measure energy, direction, and polarization of gamma rays , 1987 .

[37]  G. Di Cocco,et al.  The INTEGRAL mission , 2003 .