Iterated Integrals and Population Time Series Analysis

One of the core advantages topological methods for data analysis provide is that the language of (co)chains can be mapped onto the semantics of the data, providing a natural avenue for human understanding of the results. Here, we describe such a semantic structure on Chen’s classical iterated integral cochain model for paths in Euclidean space. Specifically, in the context of population time series data, we observe that iterated integrals provide a model-free measure of pairwise influence that can be used for causality inference. Along the way, we survey recent results and applications, review the current standard methods for causality inference, and briefly provide our outlook on generalizations to go beyond time series data.

[1]  Terry Lyons,et al.  A signature-based machine learning model for distinguishing bipolar disorder and borderline personality disorder , 2017, Translational Psychiatry.

[2]  Andrey Kormilitzin,et al.  A Primer on the Signature Method in Machine Learning , 2016, ArXiv.

[3]  Terry Lyons,et al.  Uniqueness for the signature of a path of bounded variation and the reduced path group , 2005, math/0507536.

[4]  I. Chevyrev,et al.  Signature Moments to Characterize Laws of Stochastic Processes , 2018, J. Mach. Learn. Res..

[5]  Wei Zhu,et al.  Unified structural equation modeling approach for the analysis of multisubject, multivariate functional MRI data , 2007, Human brain mapping.

[6]  Harald Oberhauser,et al.  Persistence Paths and Signature Features in Topological Data Analysis , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  P J Moore,et al.  Using path signatures to predict a diagnosis of Alzheimer’s disease , 2018, PloS one.

[8]  Kuo-Tsai Chen INTEGRATION OF PATHS—A FAITHFUL REPRE- SENTATION OF PATHS BY NONCOMMUTATIVE FORMAL POWER SERIES , 1958 .

[9]  Terry Lyons,et al.  Extracting information from the signature of a financial data stream , 2013, 1307.7244.

[10]  Jose A. Perea,et al.  Sliding Windows and Persistence: An Application of Topological Methods to Signal Analysis , 2013, Found. Comput. Math..

[11]  Tomás Gedeon,et al.  On the Efficacy of State Space Reconstruction Methods in Determining Causality , 2015, SIAM J. Appl. Dyn. Syst..

[12]  Sayan Mukherjee,et al.  Probabilistic Fréchet Means and Statistics on Vineyards , 2013, ArXiv.

[13]  R. Ghrist Barcodes: The persistent topology of data , 2007 .

[14]  C. Granger Investigating Causal Relations by Econometric Models and Cross-Spectral Methods , 1969 .

[15]  Terry Lyons,et al.  Hyperbolic development and inversion of signature , 2015, 1507.00286.

[16]  John C. Baez,et al.  Convenient Categories of Smooth Spaces , 2008, 0807.1704.

[17]  Peter K. Friz,et al.  Multidimensional Stochastic Processes as Rough Paths: Theory and Applications , 2010 .

[18]  H. Boedihardjo,et al.  Uniqueness of signature for simple curves , 2013 .

[19]  Steven L. Bressler,et al.  Wiener–Granger Causality: A well established methodology , 2011, NeuroImage.

[20]  B. Sturmfels,et al.  VARIETIES OF SIGNATURE TENSORS , 2018, Forum of Mathematics, Sigma.

[21]  Kuo-Tsai Chen,et al.  Integration of Paths, Geometric Invariants and a Generalized Baker- Hausdorff Formula , 1957 .

[22]  T. Tradler,et al.  A Chen model for mapping spaces and the surface product , 2009, 0905.2231.

[23]  Terry Lyons Rough paths, Signatures and the modelling of functions on streams , 2014, 1405.4537.

[24]  Benjamin J. Zimmerman,et al.  Dissociating tinnitus patients from healthy controls using resting-state cyclicity analysis and clustering , 2018, Network Neuroscience.

[25]  T. Haavelmo The Statistical Implications of a System of Simultaneous Equations , 1943 .

[26]  Benjamin Graham,et al.  The iisignature library: efficient calculation of iterated-integral signatures and log signatures , 2017, ACM Trans. Math. Softw..

[27]  F. Takens Detecting strange attractors in turbulence , 1981 .

[28]  Lianwen Jin,et al.  DeepWriterID: An End-to-End Online Text-Independent Writer Identification System , 2015, IEEE Intelligent Systems.

[29]  Kuo-Tsai Chen,et al.  Iterated Integrals and Exponential Homomorphisms , 1954 .

[30]  Kuo-Tsai Chen,et al.  Iterated path integrals , 1977 .

[31]  Yuliy Baryshnikov,et al.  Cyclicity in multivariate time series and applications to functional MRI data , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[32]  Peter K. Friz,et al.  Multidimensional Stochastic Processes as Rough Paths by Peter K. Friz , 2010 .

[33]  David Cohen-Steiner,et al.  Vines and vineyards by updating persistence in linear time , 2006, SCG '06.

[34]  Terry Lyons,et al.  Inverting the signature of a path , 2014, 1406.7833.

[35]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[36]  Moriah E. Thomason,et al.  Vector autoregression, structural equation modeling, and their synthesis in neuroimaging data analysis , 2011, Comput. Biol. Medicine.

[37]  Cochain algebras of mapping spaces and finite group actions , 2001, math/0110213.

[38]  George Sugihara,et al.  Detecting Causality in Complex Ecosystems , 2012, Science.

[39]  D. A. Kenny,et al.  Correlation and Causation , 1937, Wilmott.

[40]  École d'été de probabilités de Saint-Flour,et al.  Differential equations driven by rough paths , 2007 .