暂无分享,去创建一个
Sebastian Schöps | Wolfgang Ackermann | Niklas Georg | Jacopo Corno | S. Schöps | W. Ackermann | N. Georg | J. Corno
[1] H. Bungartz,et al. Sparse grids , 2004, Acta Numerica.
[2] E. al.,et al. Superconducting TESLA cavities , 2000, physics/0003011.
[3] K. Halbach,et al. Superfish-a Computer Program for Evaluation of RF Cavities with Cylindrical Symmetry , 1976 .
[4] Ursula van Rienen,et al. Comparison of techniques for uncertainty quantification of superconducting radio frequency cavities , 2014, 2014 International Conference on Electromagnetics in Advanced Applications (ICEAA).
[5] Vladimir Gubarev,et al. A Database for the European XFEL , 2013 .
[6] G. Sangalli,et al. Isogeometric analysis in electromagnetics: B-splines approximation , 2010 .
[7] R. Fox,et al. Classical Electrodynamics, 3rd ed. , 1999 .
[8] Sebastian Schöps,et al. Isogeometric simulation of Lorentz detuning in superconducting accelerator cavities , 2014, Comput. Phys. Commun..
[9] Carl de Boor,et al. A Practical Guide to Splines , 1978, Applied Mathematical Sciences.
[10] Ronald H. W. Hoppe,et al. Finite element methods for Maxwell's equations , 2005, Math. Comput..
[11] Daniele Boffi,et al. Finite element approximation of eigenvalue problems , 2010, Acta Numerica.
[12] Thomas Weiland,et al. Triangular discretization method for the evaluation of RF-fields in cylindrically symmetric cavities , 1985 .
[13] Alessandro Reali,et al. GeoPDEs: A research tool for Isogeometric Analysis of PDEs , 2011, Adv. Eng. Softw..
[14] Fabio Nobile,et al. A Stochastic Collocation Method for Elliptic Partial Differential Equations with Random Input Data , 2007, SIAM Rev..
[15] H. Keller,et al. Homotopy Method for the Large, Sparse, Real Nonsymmetric Eigenvalue Problem , 1997, SIAM J. Matrix Anal. Appl..
[16] Sebastian Schöps,et al. Isogeometric Analysis simulation of TESLA cavities under uncertainty , 2015, 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA).
[17] Thomas Weiland,et al. On the Unique Numerical Solution of Maxwellian Eigenvalue Problems in Three-dimensions , 1984 .
[18] Johann Heller,et al. Quantification of Geometric Uncertainties in Single Cell Cavities for BESSY VSR using Polynomial Chaos , 2014 .
[19] T. Weiland,et al. Computer Modelling of Two- and Three-Dimensional Cavities , 1985, IEEE Transactions on Nuclear Science.
[20] V. Akcelik,et al. Modeling imperfection effects on dipole modes in TESLA cavity , 2007, 2007 IEEE Particle Accelerator Conference (PAC).
[21] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach , 2010 .
[22] U. van Rienen,et al. Automated Mode Recognition Algorithm for Accelerating Cavities , 2014 .
[23] Zeger Bontinck,et al. Recent Advances of Isogeometric Analysis in Computational Electromagnetics , 2017, ArXiv.
[24] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[25] Jens Gravesen,et al. On the sensitivities of multiple eigenvalues , 2011 .
[26] Herbert De Gersem,et al. Stochastic Response Surface Method for Studying Microphoning and Lorenz Detuning of Accelerator Cavities , 2012 .
[27] K. Ritter,et al. Simple Cubature Formulas with High Polynomial Exactness , 1999 .
[28] Fabio Nobile,et al. A Sparse Grid Stochastic Collocation Method for Partial Differential Equations with Random Input Data , 2008, SIAM J. Numer. Anal..