Complex systems in aeolian geomorphology

Aeolian geomorphology provides a rich ground for investigating Earth surface processes and landforms as complex systems. Sand transport by wind is a classic dissipative process withnon-linear dynamics, while dunefield evolution is a prototypical self-organisation phenomenon.Bothofthesebroadareasofaeoliangeomorphologyarediscussedandanalysedinthecontextofcomplexityandasystems approach.Afeedbackloopanalysisoftheaeolianboundary-layer-flow/sediment-transport/bedforminteractions,basedoncontemporary physicalmodels,revealsthatthesystemisfundamentallyunstable(oratmostmeta-stable)andlikelytoexhibitchaoticbehaviour.Recent field-experimental research on aeolian streamers and spatio-temporal transport patterns, however, indicates that sand transport by wind may be wholly controlled by a self-similar turbulence cascade in the boundary layer flow, and that key aspects of transport event timeseriescanbefullyreproducedfromacombinationof(self-organised)1/fforcing,motionthreshold,andsaltationinertia.Theevolutionof various types of bare-sand dunes and dune field patterns have been simulated successfully with self-organising cellular automata that incorporateonlysimplifiedphysically-basedinteractions(rules).Becauseoftheirundefinedphysicalscale,however,itnotclearwhether they in fact simulate ripples (bedforms) or dunes (landforms), raising fundamental cross-cutting questions regarding the difference between aeolian dunes, impact ripples, and subaqueous (current) ripples and dunes. An extended cellular automaton (CA) model, currently under development, incorporates the effects of vegetation in the aeolian environment and is capable of simulating the development of nebkhas, blow-outs, and parabolic coastal dunes. Preliminary results indicate the potential for establishing phase diagrams and attractor trajectories for vegetated aeolian dunescapes. Progress is limited, however, by a serious lack of appropriate concepts for quantifying meaningful state variables at the landscape scale. State variables currently used in the bare-sand models are far from capturing the rich 3D topography and patterns and are not sufficiently discriminative to distinguish different attractors. The vegetationcomponentintheextendedmodel,andindeedecogeomorphicsystemsingeneral,poseevengraverchallengestoestablishing

[1]  A. Mehta,et al.  Two-species continuum model for aeolian sand ripples , 1999, cond-mat/9910252.

[2]  W. Culling,et al.  Dimension and entropy in the soil-covered landscape , 1988 .

[3]  F. El-Baz Deserts and arid lands , 1984 .

[4]  Nicholas Lancaster,et al.  Geomorphology of Desert Dunes , 1995 .

[5]  Mystery of moribund marram , 1996, Nature.

[6]  Chao-Lin Chiu,et al.  Applications Of Probability And Entropy Concepts In Open Channel Hydraulics , 1992 .

[7]  A. Baas Chaos, fractals and self-organization in coastal geomorphology: simulating dune landscapes in vegetated environments , 2002 .

[8]  H. Herrmann,et al.  Reply to the discussion on ‘Barchan Dunes: why they cannot be treated as “solitons” or “solitary waves”’ , 2005 .

[9]  Werner,et al.  Fundamentally discrete stochastic model for wind ripple dynamics. , 1993, Physical review letters.

[10]  R. Greeley,et al.  Field measurements of the flux and speed of wind‐blown sand , 1996 .

[11]  Per Bak,et al.  How Nature Works , 1996 .

[12]  G. Butterfield Near‐bed mass flux profiles in aeolian sand transport: high‐resolution measurements in a wind tunnel , 1999 .

[13]  Bruno Andreotti,et al.  Selection of dune shapes and velocities Part 1: Dynamics of sand, wind and barchans , 2002, cond-mat/0201103.

[14]  I. Wilson DESERT SANDFLOW BASINS AND A MODEL FOR THE DEVELOPMENT OF ERGS , 1971 .

[15]  Jonathan Morrison,et al.  Eddy structure in turbulent boundary layers , 2000 .

[16]  R. Anderson,et al.  Grain scale simulations of loose sedimentary beds: the example of grain-bed impacts in aeolian saltation , 1993 .

[17]  D. Mohrig,et al.  A unified model for subaqueous bed form dynamics , 2005 .

[18]  J. Anthony Stallins,et al.  Geomorphology and ecology: Unifying themes for complex systems in biogeomorphology , 2006 .

[19]  A. Provenzale,et al.  Blown by wind: nonlinear dynamics of aeolian sand ripples , 2004 .

[20]  H. Hahn,et al.  Über den Einfluß des Flankenwinkels auf die Spannungserhöhung an Kerben , 1965 .

[21]  J. T. Heynatz Analytische Darstellung der Ausbreitung von nichtlinearen kugelsymmetrischen, zylindersymmetrischen und ebenen Wellen , 1966 .

[22]  H. Tsoar,et al.  Sand dunes mobility and stability in relation to climate , 2005 .

[23]  G. Kocurek,et al.  Aeolian dune field self-organization – implications for the formation of simple versus complex dune-field patterns , 2005 .

[24]  R. J. Kind,et al.  Mechanics of aeolian transport of snow and sand , 1990 .

[25]  A. Baas Wavelet power spectra of aeolian sand transport by boundary layer turbulence , 2006 .

[26]  I. McEwan,et al.  Equilibration of saltation , 2000 .

[27]  N. Tate Maximum entropy spectral analysis for the estimation of fractals in topography , 1998 .

[28]  Robert S. Anderson,et al.  Eolian ripples as examples of self-organization in geomorphological systems , 1990 .

[29]  P. R. Owen,et al.  Saltation of uniform grains in air , 1964, Journal of Fluid Mechanics.

[30]  Robert S. Anderson,et al.  A theoretical model for aeolian impact ripples , 1987 .

[31]  D Rand,et al.  Dynamical systems and turbulence, Warwick Symposium 1980 , 1981 .

[32]  G. Gross,et al.  The wind-induced shaping and migration of an isolated dune: A numerical experiment , 1986 .

[33]  B. Bauer,et al.  Turbulence: Perspectives on Flow and Sediment Transport , 1995 .

[34]  A. N. Sharkovskiĭ Dynamic systems and turbulence , 1989 .

[35]  W. Cornelis,et al.  A Parameterisation for the Threshold Shear Velocity to Initiate Deflation of Dry and Wet Sediment , 2004 .

[36]  W. Dietrich,et al.  The search for a topographic signature of life , 2006, Nature.

[37]  A simple model for the formation of vegetated dunes , 2000, nlin/0007029.

[38]  S. Bishop,et al.  Simulation of the effect of wind speedup in the formation of transverse dune fields , 2000 .

[39]  Kenneth Pye,et al.  Aeolian sand and sand dunes , 1990 .

[40]  C. Houser,et al.  Analysis of velocity profile measurements from wind-tunnel experiments with saltation , 2004 .

[41]  T. Blaschke,et al.  Automated classification of landform elements using object-based image analysis , 2006 .

[42]  Daniel G. Brown,et al.  Measuring the abruptness of patchy ecotones – A simulation-based comparison of landscape pattern statistics , 2001, Plant Ecology.

[43]  R. Wasson,et al.  Factors determining desert dune type , 1983, Nature.

[44]  W. H. van der Putten,et al.  Plant-specific soil-borne diseases contribute to succession in foredune vegetation , 1993, Nature.

[45]  J. Thornes,et al.  Vegetation and Erosion. , 1990 .

[46]  R. Bagnold,et al.  The Physics of Blown Sand and Desert Dunes , 1941 .

[47]  P. Haff,et al.  The impact process in aeolian saltation: two‐dimensional simulations , 1988 .

[48]  G. Kocurek,et al.  BEDFORM SPACING FROM DEFECT DYNAMICS , 1999 .

[49]  F. Takens Detecting strange attractors in turbulence , 1981 .

[50]  Jonathan D. Phillips,et al.  Earth Surface Systems: Complexity, Order and Scale , 1999 .

[51]  Yaping Shao,et al.  The overshoot and equilibration of saltation , 1992 .

[52]  I. Wilson AEOLIAN BEDFORMS—THEIR DEVELOPMENT AND ORIGINS , 1972 .

[53]  Luna Bergere Leopold,et al.  The concept of entropy in landscape evolution , 1962 .

[54]  I. McEwan Bagnold's kink: A physical feature of a wind velocity profile modified by blown sand? , 1993 .

[55]  Francisco de Castro Computer simulation of the dynamics of a dune system , 1995 .

[56]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[57]  D. Sherman An equilibrium relationship for shear velocity and apparent roughness lenght in aeolian saltation , 1992 .

[58]  Jinren Ni,et al.  An analytic expression for wind-velocity profile within the saltation layer , 2004 .

[59]  M. Baddock,et al.  Barchan dunes: why they cannot be treated as ‘solitons’ or ‘solitary waves’ , 2005 .

[60]  Charles J. Puccia,et al.  Qualitative Modeling of Complex Systems: An Introduction to Loop Analysis and Time Averaging , 1986 .

[61]  B. Marticorena,et al.  Change in the aerodynamic roughness height by saltating grains: Experimental assessment, test of theory, and operational parameterization , 1998 .

[62]  K. McGarigal,et al.  FRAGSTATS: spatial pattern analysis program for quantifying landscape structure. , 1995 .

[63]  H. Takimoto,et al.  Barchan ripples under unidirectional water flows in the laboratory: formation and planar morphology , 2005 .

[64]  D. Carruthers,et al.  Air flow and sand transport over sand-dunes , 1991 .

[65]  B. T. Werner,et al.  A Steady-State Model of Wind-Blown Sand Transport , 1990, The Journal of Geology.

[66]  B. Werner Eolian dunes: Computer simulations and attractor interpretation , 1995 .

[67]  A. Baas,et al.  Modelling vegetated dune landscapes , 2007 .

[68]  I. McEwan,et al.  One‐dimensional transitional behaviour in saltation , 2000 .

[69]  Walter Landry,et al.  Computer simulations of self-organized wind ripple patterns , 1994 .

[70]  D. Sherman,et al.  A Review of the Effects of Surface Moisture Content on Aeolian Sand Transport , 1995 .

[71]  秦 浩起,et al.  Characterization of Strange Attractor (カオスとその周辺(基研長期研究会報告)) , 1987 .

[72]  H. Viles,et al.  Biogeomorphology revisited: looking towards the future , 2002 .

[73]  Bruno Andreotti,et al.  A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples , 2006, cond-mat/0603656.

[74]  J. E. Ungar,et al.  Steady state saltation in air , 1987 .

[75]  William G. Nickling,et al.  The initiation of particle movement by wind , 1988 .

[76]  J. R. Allen THE NATURE AND ORIGIN OF BED-FORM HIERARCHIES , 1968 .

[77]  S. R. McLean,et al.  The stability of ripples and dunes , 1990 .

[78]  G. Okin,et al.  Distribution of vegetation in wind‐dominated landscapes: Implications for wind erosion modeling and landscape processes , 2001 .

[79]  Rudy Slingerland Qualitative stability analysis of geologic systems, with an example from river hydraulic geometry , 1981 .

[80]  T. V. Loudon Geoscience after IT. Part A.: defining information technology, its significance in geosciences, and the aims of this publication , 2000 .

[81]  I. McEwan,et al.  An experimental study of multiple grain‐size ejecta produced by collisions of saltating grains with a flat bed , 1995 .

[82]  P. Evans,et al.  Small Scale Aeolian Bedforms , 1975 .

[83]  I. McEwan,et al.  On wind velocity profile measurements taken in wind tunnels with saltating grains , 1995 .

[84]  J. B. Thornes,et al.  Vegetation and erosion. Processes and environments. , 1992 .

[85]  M. Fonstad Cellular automata as analysis and synthesis engines at the geomorphology–ecology interface , 2006 .

[86]  Stéphane Douady,et al.  Relevant length scale of barchan dunes. , 2002, Physical review letters.

[87]  R. Anderson,et al.  Grain size segregation and stratigraphy in aeolian ripples modelled with a cellular automaton , 1993, Nature.

[88]  Vijay P. Singh,et al.  An entropy‐based morphological analysis of river basin networks , 1993 .

[89]  P. Grassberger,et al.  Characterization of Strange Attractors , 1983 .

[90]  P. Dijk,et al.  Aeolian processes across transverse dunes. II: Modelling the sediment transport and profile development , 1999 .

[91]  Chris H. Hugenholtz,et al.  Biogeomorphic model of dunefield activation and stabilization on the northern Great Plains , 2005 .

[92]  K. H. Andersen,et al.  A SIMPLE MODEL FOR THE VARIOUS PATTERN DYNAMICS OF DUNES , 1998 .

[93]  V. P. Tchakerian Desert Aeolian Processes , 1995 .

[94]  Nishimori,et al.  Formation of ripple patterns and dunes by wind-blown sand. , 1993, Physical review letters.

[95]  S. Bishop,et al.  Modelling Desert Dune Fields Based on Discrete Dynamics , 2002 .

[96]  Robert J. Allison,et al.  The Dynamics and environmental context of aeolian sedimentary systems , 1995 .

[97]  H. Charnock Wind stress on a water surface , 1955 .

[98]  Vijay P. Singh,et al.  A stochastic model for sediment yield using the Principle of Maximum Entropy , 1987 .

[99]  A. Murray From Strange Attractors to Real-World Data: Evaluating a Bedform Model by Measuring the Distance Between State-Space Plots , 2001 .

[100]  M. Sørensen,et al.  A review of recent progress in our understanding of aeolian sediment transport , 1991 .

[101]  K. H. Andersen,et al.  Corridors of barchan dunes: Stability and size selection. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[102]  Veit Schwämmle,et al.  Geomorphology: Solitary wave behaviour of sand dunes , 2003, Nature.

[103]  Bellie Sivakumar,et al.  River flow forecasting: use of phase-space reconstruction and artificial neural networks approaches , 2002 .

[104]  P.-J. Hsieh,et al.  The infinite regress illusion reveals faulty integration of local and global motion signals , 2006, Vision Research.

[105]  R. Cassidy,et al.  Self-Organised Criticality at the onset of Aeolian Sediment Transport , 2002, Journal of Coastal Research.

[106]  A. Baas,et al.  Formation and behavior of aeolian streamers , 2005 .

[107]  A. Baas Evaluation of saltation flux impact responders (Safires) for measuring instantaneous aeolian sand transport intensity , 2004 .

[108]  Sand transport by wind: a review of the current conceptual model , 1993, Geological Society, London, Special Publications.

[109]  Mauro Fiorentino,et al.  Informational entropy of fractal river networks , 1996 .

[110]  N. Endo,et al.  Barchan‐shaped ripple marks in a wave flume , 2004 .

[111]  P. Bak,et al.  Self-organized criticality. , 1988, Physical review. A, General physics.

[112]  R. Bagnold,et al.  The Movement of Desert Sand , 1935 .