A New Model for Lymphatic Metastasis: Development of a Variant of the MDA-MB-468 Human Breast Cancer Cell Line that Aggressively Metastasizes to Lymph Nodes

[1]  A. Chambers,et al.  Dietary genistein reduces metastasis in a postsurgical orthotopic breast cancer model. , 2005, Cancer research.

[2]  D. Sheppard,et al.  The Lymphangiogenic Vascular Endothelial Growth Factors VEGF-C and -D Are Ligands for the Integrin α9β1* , 2005, Journal of Biological Chemistry.

[3]  Ruud H. Brakenhoff,et al.  Dissecting the metastatic cascade , 2004, Nature Reviews Cancer.

[4]  K. Hunter,et al.  Host genetics and tumour metastasis , 2004, British Journal of Cancer.

[5]  H. Jin,et al.  Integrins: roles in cancer development and as treatment targets , 2004, British Journal of Cancer.

[6]  M. McCarter,et al.  Lymphangiogenesis is pivotal to the trials of a successful cancer metastasis. , 2004, Surgery.

[7]  A. Chambers,et al.  Beta(3) integrin expression increases breast carcinoma cell responsiveness to the malignancy-enhancing effects of osteopontin. , 2003, Molecular cancer research : MCR.

[8]  K. Alitalo,et al.  Genesis and pathogenesis of lymphatic vessels , 2003, Cell and Tissue Research.

[9]  I. Fidler,et al.  The organ microenvironment and cancer metastasis. , 2002, Differentiation; research in biological diversity.

[10]  K. Alitalo,et al.  Metastasis: Lymphangiogenesis and cancer metastasis , 2002, Nature Reviews Cancer.

[11]  S. Stacker,et al.  The role of tumor lymphangiogenesis in metastatic spread , 2002, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[12]  G. Naumov,et al.  Persistence of solitary mammary carcinoma cells in a secondary site: a possible contributor to dormancy. , 2002, Cancer research.

[13]  M. Detmar,et al.  The rediscovery of the lymphatic system: old and new insights into the development and biological function of the lymphatic vasculature. , 2002, Genes & development.

[14]  David A. Cheresh,et al.  Role of integrins in cell invasion and migration , 2002, Nature Reviews Cancer.

[15]  A. Chambers,et al.  The Role of Osteopontin in Breast Cancer: Clinical and Experimental Studies , 2001, Journal of Mammary Gland Biology and Neoplasia.

[16]  P. Savagner,et al.  Leaving the neighborhood: molecular mechanisms involved during epithelial‐mesenchymal transition , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.

[17]  Elise C. Kohn,et al.  The microenvironment of the tumour–host interface , 2001, Nature.

[18]  P. Carmeliet,et al.  Heterogeneous vascular dependence of tumor cell populations. , 2001, The American journal of pathology.

[19]  A. O’Regan,et al.  Osteopontin: a key cytokine in cell‐mediated and granulomatous inflammation , 2000, International journal of experimental pathology.

[20]  B. Boyer,et al.  Induction and regulation of epithelial-mesenchymal transitions. , 2000, Biochemical pharmacology.

[21]  A. Chambers,et al.  Osteopontin‐induced, integrin‐dependent migration of human mammary epithelial cells involves activation of the hepatocyte growth factor receptor (Met) , 2000, Journal of cellular biochemistry.

[22]  Eric S. Lander,et al.  Genomic analysis of metastasis reveals an essential role for RhoC , 2000, Nature.

[23]  S. Dedhar,et al.  Bi-directional signal transduction by integrin receptors. , 2000, The international journal of biochemistry & cell biology.

[24]  D. Sheppard,et al.  The Integrin α9β1 Binds to a Novel Recognition Sequence (SVVYGLR) in the Thrombin-cleaved Amino-terminal Fragment of Osteopontin* , 1999, The Journal of Biological Chemistry.

[25]  R. Walker,et al.  Integrins: a role as cell signalling molecules. , 1999, Molecular pathology : MP.

[26]  M. C. Ling,et al.  Osteopontin induces increased invasiveness and plasminogen activator expression of human mammary epithelial cells , 1999, Oncogene.

[27]  D. Sheppard,et al.  The Integrin α9β1 Mediates Adhesion to Activated Endothelial Cells and Transendothelial Neutrophil Migration through Interaction with Vascular Cell Adhesion Molecule-1 , 1999, The Journal of cell biology.

[28]  D. Welch Technical considerations for studying cancer metastasis in vivo , 1997, Clinical & Experimental Metastasis.

[29]  D. Sheppard,et al.  Osteopontin N-terminal Domain Contains a Cryptic Adhesive Sequence Recognized by α9β1 Integrin* , 1996, The Journal of Biological Chemistry.

[30]  D. Sheppard,et al.  The integrin alpha 9 beta 1 mediates cell attachment to a non-RGD site in the third fibronectin type III repeat of tenascin. , 1994, The Journal of biological chemistry.

[31]  A. Chambers,et al.  Inhibition of Arg-Gly-Asp (RGD)-mediated cell adhesion to osteopontin by a monoclonal antibody against osteopontin. , 1994, The Journal of biological chemistry.

[32]  D. Denhardt,et al.  Osteopontin: a protein with diverse functions , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[33]  Nicolson Gl,et al.  Molecular basis of tumor progression: mechanisms of organ-specific tumor metastasis. , 1993 .

[34]  T. Yeatman,et al.  Molecular basis of tumor progression: mechanisms of organ-specific tumor metastasis. , 1993, Seminars in surgical oncology.

[35]  G. Royle,et al.  Axillary nodal status in women with screen-detected breast cancer. , 1993, European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology.

[36]  J. Price,et al.  Studies of human breast cancer metastasis using nude mice , 1990, Cancer and Metastasis Reviews.

[37]  J. Price,et al.  Tumorigenicity and metastasis of human breast carcinoma cell lines in nude mice. , 1990, Cancer research.

[38]  C. Carter,et al.  Relation of tumor size, lymph node status, and survival in 24,740 breast cancer cases , 1989, Cancer.

[39]  G. Nicolson Cancer metastasis: tumor cell and host organ properties important in metastasis to specific secondary sites. , 1988, Biochimica et biophysica acta.

[40]  W. L. McGuire,et al.  Prognostic factors for recurrence and survival in human breast cancer , 1987, Breast Cancer Research and Treatment.

[41]  V. Ling,et al.  Dynamic heterogeneity: rapid generation of metastatic variants in mouse B16 melanoma cells. , 1984, Science.

[42]  C. Redmond,et al.  Relation of number of positive axillary nodes to the prognosis of patients with primary breast cancer. An NSABP update , 1983, Cancer.

[43]  G. Murphy,et al.  Management and survival of female breast cancer: Results of a national survey by the American college of surgeons , 1980, Cancer.

[44]  M. Olivé,et al.  Long-term human breast carcinoma cell lines of metastatic origin: Preliminary characterization , 1978, In Vitro.

[45]  I. Fidler,et al.  Selection of successive tumour lines for metastasis. , 1973, Nature: New biology.

[46]  C. Oakley,et al.  Cases , 1971 .

[47]  G. Poste Experimental systems for analysis of the malignant phenotype , 2004, Cancer and Metastasis Reviews.

[48]  I. Carr Lymphatic metastasis , 2004, Cancer and Metastasis Reviews.

[49]  I. Macdonald,et al.  Metastasis: Dissemination and growth of cancer cells in metastatic sites , 2002, Nature Reviews Cancer.

[50]  M. Pepper,et al.  Lymphatic dissemination of tumour cells and the formation of micrometastases. , 2002, The Lancet. Oncology.

[51]  R. Mansel,et al.  Lymphangiogenesis and breast cancer metastasis. , 2002, Histology and histopathology.

[52]  Taylor Murray,et al.  Cancer Statistics, 2001 , 2001, CA: a cancer journal for clinicians.

[53]  J. Sleeman The lymph node as a bridgehead in the metastatic dissemination of tumors. , 2000, Recent results in cancer research. Fortschritte der Krebsforschung. Progres dans les recherches sur le cancer.

[54]  R. Foster,et al.  The biologic and clinical significance of lymphatic metastases in breast cancer. , 1996, Surgical oncology clinics of North America.

[55]  V. Castronovo,et al.  Increased expression of osteonectin and osteopontin, two bone matrix proteins, in human breast cancer. , 1995, The American journal of pathology.

[56]  I. Fidler,et al.  Relative malignant potential of human breast carcinoma cell lines established from pleural effusions and a brain metastasis. , 1991, Invasion & metastasis.

[57]  L. Weiss Random and nonrandom processes in metastasis, and metastatic inefficiency. , 1983, Invasion & metastasis.

[58]  H. W. Shaw Carcinoma of the female mammary gland. , 1952, The American surgeon.