Invariances in variance estimates

We provide variants and improvements of the Brascamp‐Lieb variance inequality which takes into account the invariance properties of the underlying measure. This is applied to spectral gap estimates for log-concave measures with many symmetries and to non-interacting conservative spin systems.

[1]  Keith Ball Shadows of convex bodies , 1989 .

[2]  B. Maurey,et al.  The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems , 2004 .

[3]  REMARKS ON DECAY OF CORRELATIONS AND WITTEN LAPLACIANS II — ANALYSIS OF THE DEPENDENCE ON THE INTERACTION , 1999 .

[4]  M. Fradelizi Hyperplane Sections of Convex Bodies in Isotropic Position , 1999 .

[5]  B. Klartag,et al.  A Berry-Esseen type inequality for convex bodies with an unconditional basis , 2007, 0705.0832.

[6]  D. Cordero-Erausquin On Berndtsson’s generalization of Prékopa’s theorem , 2005 .

[7]  Maria G. Westdickenberg,et al.  A two-scale approach to logarithmic Sobolev inequalities and the hydrodynamic limit , 2009 .

[8]  S. Bobkov Isoperimetric and Analytic Inequalities for Log-Concave Probability Measures , 1999 .

[9]  B. Klartag,et al.  Approximately gaussian marginals and the hyperplane conjecture , 2010, 1001.0875.

[10]  P. Diaconis,et al.  Generating a random permutation with random transpositions , 1981 .

[11]  C. Borell Convex measures on locally convex spaces , 1974 .

[12]  Remarks on non-interacting conservative spin systems: The case of gamma distributions , 2009 .

[13]  Uniform Poincaré inequalities for unbounded conservative spin systems: the non-interacting case , 2002, math/0202023.

[14]  K. Elworthy,et al.  Asymptotic Problems in Probability Theory: Stochastic Models and Diffusions on Fractals , 1995 .

[15]  L. Hörmander Notions of Convexity , 1994 .

[16]  Keith Ball,et al.  The central limit problem for convex bodies , 2003 .

[17]  F. Barthe,et al.  The volume product of convex bodies with many hyperplane symmetries , 2013 .

[18]  Miklós Simonovits,et al.  Isoperimetric problems for convex bodies and a localization lemma , 1995, Discret. Comput. Geom..

[19]  F. Otto,et al.  Uniform logarithmic Sobolev inequalities for conservative spin systems with super-quadratic single-site potential , 2013, 1307.2338.

[20]  B. Klartag On convex perturbations with a bounded isotropic constant , 2006 .

[21]  O. Guédon,et al.  Interpolating Thin-Shell and Sharp Large-Deviation Estimates for Lsotropic Log-Concave Measures , 2010, 1011.0943.

[22]  George Papanicolaou,et al.  Nonlinear diffusion limit for a system with nearest neighbor interactions , 1988 .

[23]  E. Lieb,et al.  On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation , 1976 .

[24]  Feng-Yu Wang,et al.  Functional Inequalities for Empty Essential Spectrum , 2000 .

[25]  Poincare Inequalities and Moment Maps , 2011, 1104.2791.

[26]  D. Hensley Slicing convex bodies—bounds for slice area in terms of the body’s covariance , 1980 .

[27]  C. Landim,et al.  Spectral gap and logarithmic Sobolev inequality for unbounded conservative spin systems , 2002 .

[28]  F. Barthe On a reverse form of the Brascamp-Lieb inequality , 1997, math/9705210.

[29]  E. Milman On the role of convexity in isoperimetry, spectral gap and concentration , 2007, 0712.4092.

[30]  V. Milman,et al.  Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space , 1989 .

[31]  B. Helffer Remarks on decay of correlations and Witten laplacians III. Application to logarithmic Sobolev inequalities , 1999 .

[32]  K. Ball Logarithmically concave functions and sections of convex sets in $R^{n}$ , 1988 .

[33]  Glauber versus Kawasaki for spectral gap and logarithmic Sobolev inequalities of some unbounded conservative spin systems , 2002 .