A Ku-Band CMOS Power Amplifier With Series-Shunt LC Notch Filter for Satellite Communications

This article presents a <inline-formula> <tex-math notation="LaTeX">$Ku$ </tex-math></inline-formula>-band power amplifier with a series-shunt <inline-formula> <tex-math notation="LaTeX">$LC$ </tex-math></inline-formula> notch filter in 65-nm CMOS. The notch filter is integrated into the inter-stage matching network to attenuate the receiver-band noise, thereby reducing transmitter-to-receiver interference. A comprehensive analysis of the series and the shunt notch filters, as well as the position to apply the notch filter is discussed. Besides, a systematic method of optimizing passive devices in the notch filter is proposed to further improve network <inline-formula> <tex-math notation="LaTeX">$Q$ </tex-math></inline-formula> and minimize the influence on the power amplifier. Fabricated in 65-nm CMOS technology, the power amplifier prototype delivers a measured gain of 21.9 dB with 3-dB bandwidth from 13.7 GHz to 16.7 GHz at the nominal state. At 14.2 GHz, it can offer a saturated output power of 14.5 dBm with peak power added efficiency of 24.1%. The notch frequency is adjustable from 10.3 to 11.9 GHz to offer the best attenuation at the receiver band. From 10 to 12 GHz, a maximal attenuation of 30 dB is achieved. The design occupies a core area of <inline-formula> <tex-math notation="LaTeX">$0.35\times 0.85$ </tex-math></inline-formula> mm<sup>2</sup>.

[1]  Pier Andrea Traverso,et al.  A Fully Nonlinear Compact Modeling Approach for High-Frequency Noise in Large-Signal Operated Microwave Electron Devices , 2015, IEEE Transactions on Microwave Theory and Techniques.

[2]  Kai Tang,et al.  A 13.5–19 GHz 20.6-dB Gain CMOS Power Amplifier for FMCW Radar Application , 2017, IEEE Microwave and Wireless Components Letters.

[3]  Edwin van der Heijden,et al.  A fully integrated down-converter for Ka-band VSAT satellite reception , 2012, 2012 Proceedings of the ESSCIRC (ESSCIRC).

[4]  Peter M. Asbeck,et al.  Digital signal injection technique for cancellation of receive-band spurious emissions in FDD cellular transmitters , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[5]  Marco Vigilante,et al.  A Wideband Class-AB Power Amplifier With 29–57-GHz AM–PM Compensation in 0.9-V 28-nm Bulk CMOS , 2018, IEEE Journal of Solid-State Circuits.

[6]  K. Kwon,et al.  A Hybrid Transformer-Based CMOS Duplexer With a Single-Ended Notch-Filtered LNA for Highly Integrated Tunable RF Front-Ends , 2018, IEEE Microwave and Wireless Components Letters.

[7]  Xiaohu You,et al.  A DC-50 GHz CMOS Switched-Type Attenuator With Capacitive Compensation Technique , 2020, IEEE Transactions on Circuits and Systems I: Regular Papers.

[8]  Bumman Kim,et al.  Highly Linear mm-Wave CMOS Power Amplifier , 2016, IEEE Transactions on Microwave Theory and Techniques.

[9]  F. Aryanfar,et al.  A Broadband Stacked Power Amplifier in 45-nm CMOS SOI Technology , 2013, IEEE Journal of Solid-State Circuits.

[10]  Baoyong Chi,et al.  A Full Ka-Band Power Amplifier With 32.9% PAE and 15.3-dBm Power in 65-nm CMOS , 2018, IEEE Transactions on Circuits and Systems I: Regular Papers.

[11]  Mustafa Ergen,et al.  Survey on Land Mobile Satellite System: Challenges and Future Research Trends , 2019, IEEE Access.

[12]  Dixian Zhao,et al.  Geometric Analysis and Systematic Design of a Reflective-Type Phase Shifter With Full 360° Phase Shift Range and Minimal Loss Variation , 2019, IEEE Transactions on Microwave Theory and Techniques.

[13]  Chang-Ho Lee,et al.  A High-Power and Highly Linear CMOS Switched Capacitor , 2010, IEEE Microwave and Wireless Components Letters.

[14]  Dixian Zhao,et al.  Analysis, Design and Modeling of Millimeter-Wave Wilkinson Power Combiner for 5G Phased Array , 2019, 2019 IEEE MTT-S International Wireless Symposium (IWS).

[15]  Hua Wang,et al.  A CMOS Broadband Power Amplifier With a Transformer-Based High-Order Output Matching Network , 2010, IEEE Journal of Solid-State Circuits.

[16]  Georg Boeck,et al.  70W GaN-HEMT Ku-Band Power Amplifier in MIC Technology , 2017, IEEE Transactions on Microwave Theory and Techniques.

[17]  Sherif Shakib,et al.  A Highly Efficient and Linear Power Amplifier for 28-GHz 5G Phased Array Radios in 28-nm CMOS , 2016, IEEE Journal of Solid-State Circuits.

[18]  R. Negra,et al.  Design and Implementation of Wideband Stacked Distributed Power Amplifier in 0.13- ${\mu }\text {m}$ CMOS Using Uniform Distributed Topology , 2017, IEEE Transactions on Microwave Theory and Techniques.

[19]  Peter Asbeck,et al.  Adaptive Cancellation of Digital Power Amplifier Receive Band Noise for FDD Transceivers , 2019, IEEE Microwave and Wireless Components Letters.

[20]  J. S. Kenney,et al.  A PA-noise cancellation technique for next generation highly integrated RF front-ends , 2012, 2012 IEEE Radio Frequency Integrated Circuits Symposium.

[21]  Negar Reiskarimian,et al.  29.4 High-Performance Isolators and Notch Filters Based on N-Path Negative Transresistance , 2020, 2020 IEEE International Solid- State Circuits Conference - (ISSCC).

[22]  J.R. Long,et al.  Monolithic transformers for silicon RF IC design , 2000, IEEE Journal of Solid-State Circuits.

[24]  Peter R. Kinget,et al.  Low-Noise Active Cancellation of Transmitter Leakage and Transmitter Noise in Broadband Wireless Receivers for FDD/Co-Existence , 2014, IEEE Journal of Solid-State Circuits.

[25]  S. Safavi-Naeini,et al.  Efficient, Low-Cost Integrated Waveguide-Fed Planar Antenna Array for Ku-Band Applications , 2009, IEEE Antennas and Wireless Propagation Letters.

[26]  Gabriel M. Rebeiz,et al.  A Scalable Circularly-Polarized 256-Element Ka-Band Phased-Array SATCOM Transmitter with ±60° Beam Scanning and 34.5 dBW EIRP , 2019, 2019 IEEE MTT-S International Microwave Symposium (IMS).

[27]  P. Pande,et al.  A 40% PAE Frequency-Reconfigurable CMOS Power Amplifier With Tunable Gate–Drain Neutralization for 28-GHz 5G Radios , 2018, IEEE Transactions on Microwave Theory and Techniques.

[28]  John R. Long,et al.  A 58–65 GHz Neutralized CMOS Power Amplifier With PAE Above 10% at 1-V Supply , 2010, IEEE Journal of Solid-State Circuits.

[29]  Gabriel M. Rebeiz,et al.  Ultra-Low Cost Ku-Band Dual-Polarized Transmit and Receive Phased-Arrays for SATCOM and Point-to-Point Applications with Bandwidths up to 750 MHz , 2019, 2019 IEEE International Symposium on Phased Array System & Technology (PAST).

[30]  Patrick Reynaert,et al.  A 60-GHz Dual-Mode Class AB Power Amplifier in 40-nm CMOS , 2013, IEEE Journal of Solid-State Circuits.

[31]  Andrea Bevilacqua,et al.  Second-Order Equivalent Circuits for the Design of Doubly-Tuned Transformer Matching Networks , 2018, IEEE Transactions on Circuits and Systems I: Regular Papers.

[32]  Ali Hajimiri,et al.  Distributed active transformer-a new power-combining and impedance-transformation technique , 2002 .

[33]  Gabriel M. Rebeiz,et al.  A Scalable Dual-Polarized 256-Element Ku-Band SATCOM Phased-Array Transmitter with 36.5 dBW EIRP Per Polarization , 2018, 2018 48th European Microwave Conference (EuMC).