A density functional global optimisation study of neutral 8-atom Cu-Ag and Cu-Au clusters

AbstractThe effect of doping on the energetics and dimensionality of eight atom coinage metal subnanometre particles is fully resolved using a genetic algorithm in tandem with on the fly density functional theory calculations to determine the global minima (GM) for CunAg(8−n) and CunAu(8−n) clusters. Comparisons are made to previous ab initio work on mono- and bimetallic clusters, with excellent agreement found. Charge transfer and geometric arguments are considered to rationalise the stability of the particular permutational isomers found. An interesting transition between three dimensional and two dimensional GM structures is observed for copper-gold clusters, which is sharper and appears earlier in the doping series than is known for gold-silver particles.

[1]  K. Jackson,et al.  First-principles study of intermediate size silver clusters: Shape evolution and its impact on cluster properties. , 2006, The Journal of chemical physics.

[2]  A Density Functional Study of Bare and Hydrogenated Platinum Clusters , 2006, physics/0602021.

[3]  D. Vanderbilt,et al.  Optimally smooth norm-conserving pseudopotentials. , 1985, Physical review. B, Condensed matter.

[4]  Ho,et al.  Molecular geometry optimization with a genetic algorithm. , 1995, Physical review letters.

[5]  A. Fortunelli,et al.  A study of bimetallic Cu-Ag, Au-Ag and Pd-Ag clusters adsorbed on a double-vacancy-defected MgO(100) terrace. , 2008, Faraday discussions.

[6]  J. Pittner,et al.  Structural and optical properties of small oxygen-doped- and pure-silver clusters , 1999 .

[7]  Jinlan Wang,et al.  Structural, Electronic, and Optical Properties of Noble Metal Clusters from First Principles , 2006 .

[8]  Jinlan Wang,et al.  Static polarizabilities and optical absorption spectra of gold clusters ( Au n , n = 2 – 14 and 20) from first principles , 2007 .

[9]  Š. Vajda,et al.  A first-principles theoretical approach to heterogeneous nanocatalysis. , 2012, Nanoscale.

[10]  Gert von Helden,et al.  Size and charge effects on the binding of CO to late transition metal clusters. , 2006, The Journal of chemical physics.

[11]  R. Johnston Evolving better nanoparticles: Genetic algorithms for optimising cluster geometries , 2003 .

[12]  J. Soler,et al.  Trends in the structure and bonding of noble metal clusters , 2004 .

[13]  R. Johnston,et al.  Nanoalloys: from theory to applications of alloy clusters and nanoparticles. , 2008, Chemical reviews.

[14]  H. Häkkinen,et al.  Effects of Silver Doping on the Geometric and Electronic Structure and Optical Absorption Spectra of the Au25–nAgn(SH)18– (n = 1, 2, 4, 6, 8, 10, 12) Bimetallic Nanoclusters , 2012 .

[15]  Maofa Ge,et al.  Geometrical and electronic structures of gold, silver, and gold-silver binary clusters: Origins of ductility of gold and gold-silver alloy formation , 2003 .

[16]  Sungsik Lee,et al.  Cluster size effects on CO oxidation activity, adsorbate affinity, and temporal behavior of model Au(n)/TiO2 catalysts. , 2005, The Journal of chemical physics.

[17]  G. Ganteför,et al.  Photoelectron spectroscopy of Cu−n clusters: Comparison with jellium model predictions , 1993 .

[18]  Supported magnetic nanoclusters: soft landing of Pd clusters on a MgO surface. , 2002, Physical review letters.

[19]  Joe Ho,et al.  Photoelectron spectroscopy of metal cluster anions : Cu−n, Ag−n, and Au−n , 1990 .

[20]  M. Kappes,et al.  Determining the size-dependent structure of ligand-free gold-cluster ions , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[21]  Masatake Haruta,et al.  When gold is not noble: catalysis by nanoparticles. , 2003, Chemical record.

[22]  L. Curtiss,et al.  Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. , 2009, Nature materials.

[23]  R. Johnston,et al.  Charge transfer driven surface segregation of gold atoms in 13-atom Au–Ag nanoalloys and its relevance to their structural, optical and electronic properties , 2008 .

[24]  Hannu Häkkinen,et al.  Charging Effects on Bonding and Catalyzed Oxidation of CO on Au8 Clusters on MgO , 2005, Science.

[25]  K. Jackson,et al.  Probing the structural evolution of Cu(N) (-), N=9-20, through a comparison of computed electron removal energies and experimental photoelectron spectra. , 2010, The Journal of chemical physics.

[26]  Stefano de Gironcoli,et al.  QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[27]  A. Sebetci Does spin-orbit coupling effect favor planar structures for small platinum clusters? , 2008, Physical chemistry chemical physics : PCCP.

[28]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[29]  Christoph R. Jacob,et al.  The structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations , 2002 .

[30]  L. Curtiss,et al.  Oxidative Decomposition of Methanol on Subnanometer Palladium Clusters: The Effect of Catalyst Size and Support Composition , 2010 .

[31]  R. Mitrić,et al.  Ab initio study of the absorption spectra of Agn (n=5–8) clusters , 2001 .

[32]  Ye Xu,et al.  Effect of particle size on the oxidizability of platinum clusters. , 2006, The journal of physical chemistry. A.

[33]  Roy L. Johnston,et al.  Theoretical study of Cu–Au nanoalloy clusters using a genetic algorithm , 2002 .

[34]  G. Meijer,et al.  Far-infrared spectroscopy of small neutral silver clusters. , 2006, The journal of physical chemistry. A.

[35]  R. Fournier Theoretical study of the structure of silver clusters , 2001 .

[36]  S. Ogut,et al.  First Principles Absorption Spectra of Cu$_n$ ($n=1-10$) Clusters , 2009 .

[37]  Britta Redlich,et al.  Structures of Neutral Au7, Au19, and Au20 Clusters in the Gas Phase , 2008, Science.

[38]  M. Huda,et al.  A correlation study of small silver clusters , 2003 .

[39]  I. L. Garzón,et al.  Molecular dynamics study of the Ag6 cluster using an ab initio many-body model potential , 1998 .

[40]  Ye Xu,et al.  Thermodynamic equilibrium compositions, structures, and reaction energies of Pt(x)O(y) (x = 1-3) clusters predicted from first principles. , 2006, The journal of physical chemistry. B.

[41]  Alfredo Pasquarello,et al.  Structural and Electronic-Properties of Small Copper Clusters - a First Principles Study , 1995 .

[42]  Sungsik Lee,et al.  Agglomeration, sputtering, and carbon monoxide adsorption behavior for Au/Al(2)O(3) prepared by Au(n)(+) deposition on Al(2)O(3)/NiAl(110). , 2005, The journal of physical chemistry. B.

[43]  Hannu Häkkinen,et al.  Bonding in Cu, Ag, and Au clusters: relativistic effects, trends, and surprises. , 2002, Physical review letters.

[44]  G. Meijer,et al.  The adsorption of CO on group 10 (Ni, Pd, Pt) transition-metal clusters. , 2008, Physical chemistry chemical physics : PCCP.

[45]  R. Johnston,et al.  Structure and spectral characteristics of the nanoalloy Ag3Au10 , 2007 .

[46]  D. Harding,et al.  Communication: The structures of small cationic gas-phase platinum clusters. , 2012, The Journal of chemical physics.

[47]  Jijun Zhao,et al.  Tight-binding study of structural and electronic properties of silver clusters , 2001 .

[48]  Jaroslav V. Burda,et al.  Density functional study of structural and electronic properties of bimetallic silver–gold clusters: Comparison with pure gold and silver clusters , 2002 .

[49]  M. Huda,et al.  Electronic structures and magic numbers of small silver clusters: A many-body perturbation-theoretic study , 2003 .

[50]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[51]  Karo Michaelian,et al.  Structure and energetics of Ni, Ag, and Au nanoclusters , 1999 .

[52]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[53]  Rolf Schäfer,et al.  Dopant-induced 2D-3D transition in small Au-containing clusters: DFT-global optimisation of 8-atom Au-Ag nanoalloys. , 2012, Nanoscale.

[54]  Patrick Weis,et al.  Structures of small gold cluster cations (Aun+, n<14): Ion mobility measurements versus density functional calculations , 2002 .

[55]  T. Bierweiler,et al.  Structures of small silver cluster cations (Agn+, n<12): ion mobility measurements versus density functional and MP2 calculations , 2002 .

[56]  Leiming Wang,et al.  Observation of earlier two-to-three dimensional structural transition in gold cluster anions by isoelectronic substitution: MAu(n)(-) (n=8-11; M=Ag,Cu). , 2010, The Journal of chemical physics.

[57]  Hansong Cheng,et al.  Evolution of small copper clusters and dissociative chemisorption of hydrogen. , 2005, Physical review letters.

[58]  I. G. Kaplan,et al.  A comparative theoretical study of stable geometries and energetic properties of small silver clusters , 1994 .