Genome Sequence of Aedes aegypti, a Major Arbovirus Vector

We present a draft sequence of the genome of Aedes aegypti, the primary vector for yellow fever and dengue fever, which at ∼1376 million base pairs is about 5 times the size of the genome of the malaria vector Anopheles gambiae. Nearly 50% of the Ae. aegypti genome consists of transposable elements. These contribute to a factor of ∼4 to 6 increase in average gene length and in sizes of intergenic regions relative to An. gambiae and Drosophila melanogaster. Nonetheless, chromosomal synteny is generally maintained among all three insects, although conservation of orthologous gene order is higher (by a factor of ∼2) between the mosquito species than between either of them and the fruit fly. An increase in genes encoding odorant binding, cytochrome P450, and cuticle domains relative to An. gambiae suggests that members of these protein families underpin some of the biological differences between the two mosquito species.

Evgeny M. Zdobnov | Ian T. Paulsen | Jonathan Crabtree | Ewan Birney | Hadi Quesneville | Mario Stanke | James R. Hogan | Sergio Verjovski-Almeida | Frank H. Collins | William M. Gelbart | Steven L. Salzberg | David Kulp | Chunhong Mao | Stefan Wyder | Saul Kravitz | Sinead B. O'Leary | Karyn Megy | Evgenia V. Kriventseva | Zhiyong Xi | Qiandong Zeng | Daniel Lawson | Evan Mauceli | Joshua Orvis | Akio Mori | Ryan C. Kennedy | Manfred Grabherr | Martin Shumway | David Jaffe | Yongmei Zhao | Philip Montgomery | David DeCaprio | Chad Nusbaum | Mihaela Pertea | Martin Hammond | Javier Costas | Hamza El-Dorry | Owen White | George Dimopoulos | Kurt LaButti | Jennifer R. Wortman | Marcelo B. Soares | Suely L. Gomes | Vishvanath Nene | Linda I. Hannick | Michael Schatz | Robert V. Bruggner | Peter Arensburger | Kathryn S. Campbell | Neil F. Lobo | David W. Severson | Eric O. Stinson | Maria F. Bonaldo | Shelby L. Bidwell | Susan E. Brown | Shelby Bidwell | Michael H. Holmes | M. Grabherr | B. Haas | Q. Zeng | E. Mauceli | B. Birren | C. Nusbaum | M. Schatz | S. Salzberg | E. Birney | O. White | D. Jaffe | S. Kravitz | Y. Rogers | J. Galagan | D. Kulp | R. Bruggner | M. Soares | M. Bonaldo | W. Gelbart | I. Paulsen | V. Nene | M. Pertea | Martin Shumway | M. Hammond | D. Lawson | K. Megy | E. Zdobnov | J. Crabtree | L. Hannick | J. Wortman | J. Miller | E. Kriventseva | K. Eiglmeier | J. Costas | H. Quesneville | M. Stanke | C. Kodira | J. Johnston | C. Fraser-Liggett | Joshua Orvis | Qi Zhao | Philip Montgomery | Chunhong Mao | H. Koo | R. Kennedy | S. Gomes | C. Menck | S. Verjovski-Almeida | M. Holmes | J. Biedler | Z. Tu | S. Sinkins | N. Lee | B. Loftus | A. Raikhel | D. Severson | P. Atkinson | Z. Xi | G. Dimopoulos | C. Hill | K. LaButti | J. Tubío | J. P. Vanzee | N. Lobo | F. Collins | David DeCaprio | P. Arensburger | K. S. Campbell | Song Li | A. Mori | A. L. Nascimento | D. Werner | M. Coy | H. El-Dorry | P. Amedeo | D. Knudson | J. Hogan | Catherine A. Hill | J. Spencer Johnston | Alexander S. Raikhel | Steven P. Sinkins | Bruce Birren | S. Wyder | D. Hogenkamp | Jim Biedler | Chinnappa Kodira | Yongmei Zhao | Claire M. Fraser-Liggett | Karin Eiglmeier | Yu-Hui Rogers | C. Roth | Monique R. Coy | E. Stinson | James Galagan | J. Johnston | Brian Haas | B. Debruyn | D. D. Lovin | H. Naveira | Brendan Loftus | Peter W. Atkinson | Qi Zhao | Charles W. Roth | Paolo Amedeo | Eric Eisenstadt | Jennifer R. Schneider | Dennis L. Knudson | Zhijian (Jake) Tu | Quinghu Ren | Jingsong Zhu | David G. Hogenkamp | Matt Crawford | Becky deBruyn | Hean Koo | Eduardo Lee | Song Li | Diane D. Lovin | Carlos F. M. Menck | Jason R. Miller | Ana L. Nascimento | Horacio F. Naveira | Sinéad O'Leary | Kyanne R. Reidenbach | Jose M. C. Tubio | Janice P. VanZee | Doreen Werner | Norman H. Lee | J. R. Schneider | E. Eisenstadt | D. DeCaprio | Quinghu Ren | Jingsong Zhu | Matt Crawford | Eduardo Lee | M. Perțea | Qiandong Zeng | M. F. Bonaldo | J. R. Schneider | Peter Arensburger | Claire Fraser-Liggett | Karyn Megy

[1]  Peer Bork,et al.  Comparative Genome and Proteome Analysis of Anopheles gambiae and Drosophila melanogaster , 2002, Science.

[2]  Rolf Apweiler,et al.  InterProScan - an integration platform for the signature-recognition methods in InterPro , 2001, Bioinform..

[3]  B. Beaty,et al.  The biology of disease vectors , 1996 .

[4]  A. James,et al.  Genome‐wide analysis of gene expression in adult Anopheles gambiae , 2006, Insect molecular biology.

[5]  J. Krzywinski,et al.  Analysis of the complete mitochondrial DNA from Anopheles funestus: an improved dipteran mitochondrial genome annotation and a temporal dimension of mosquito evolution. , 2006, Molecular phylogenetics and evolution.

[6]  Yongliang Fan,et al.  Molecular characterization of insulin-like peptides in the yellow fever mosquito, Aedes aegypti: Expression, cellular localization, and phylogeny , 2006, Peptides.

[7]  R. Fulton,et al.  Quantitative trait loci that control vector competence for dengue-2 virus in the mosquito Aedes aegypti. , 2000, Genetics.

[8]  Jian Wang,et al.  The Genome Sequence of the Malaria Mosquito Anopheles gambiae , 2002, Science.

[9]  P. Bork,et al.  Quantification of insect genome divergence. , 2007, Trends in genetics : TIG.

[10]  D. Gubler,et al.  Emerging flaviviruses: the spread and resurgence of Japanese encephalitis, West Nile and dengue viruses , 2004, Nature Medicine.

[11]  D. Severson,et al.  Linkage map organization of expressed sequence tags and sequence tagged sites in the mosquito, Aedes aegypti , 2002, Insect molecular biology.

[12]  Ian T. Paulsen,et al.  TransportDB: a relational database of cellular membrane transport systems , 2004, Nucleic Acids Res..

[13]  D. Severson,et al.  Comparative genome analysis of the yellow fever mosquito Aedes aegypti with Drosophila melanogaster and the malaria vector mosquito Anopheles gambiae. , 2004, The Journal of heredity.

[14]  Alan Wise,et al.  Target validation of G-protein coupled receptors. , 2002, Drug discovery today.

[15]  D. Severson,et al.  Genetic and physical mapping in mosquitoes: molecular approaches. , 2001, Annual review of entomology.

[16]  C. Schütt,et al.  Structure, function and evolution of sex-determining systems in Dipteran insects. , 2000, Development.

[17]  M. Miles,et al.  An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks. , 2002, Molecular biology and evolution.

[18]  J. Costas,et al.  Structural and evolutionary analyses of the Ty3/gypsy group of LTR retrotransposons in the genome of Anopheles gambiae. , 2005, Molecular biology and evolution.

[19]  E. Mauceli,et al.  Whole-genome sequence assembly for mammalian genomes: Arachne 2. , 2003, Genome research.

[20]  M. Mogi,et al.  Biology of mosquitoes. , 1987 .

[21]  A. Raikhel,et al.  A Toll Receptor and a Cytokine, Toll5A and Spz1C, Are Involved in Toll Antifungal Immune Signaling in the Mosquito Aedes aegypti* , 2006, Journal of Biological Chemistry.

[22]  The Aedes aegypti genome: complexity and organization. , 1991, Genetical research.

[23]  B. Ligon Reemergence of an Unusual Disease: The Chikungunya Epidemic , 2006, Seminars in Pediatric Infectious Diseases.

[24]  L. S. Ross,et al.  Sindbis virus induces transport processes and alters expression of innate immunity pathway genes in the midgut of the disease vector, Aedes aegypti. , 2005, Insect biochemistry and molecular biology.

[25]  C. Feschotte Merlin, a new superfamily of DNA transposons identified in diverse animal genomes and related to bacterial IS1016 insertion sequences. , 2004, Molecular biology and evolution.

[26]  D. Barnard Biology of Disease Vectors , 2005 .

[27]  M. Meselson,et al.  Retroelements containing introns in diverse invertebrate taxa , 2003, Nature Genetics.

[28]  María de Lourdes Muñoz,et al.  The four serotypes of dengue recognize the same putative receptors in Aedes aegypti midgut and Ae. albopictus cells , 2006, BMC Microbiology.

[29]  M. S. Briscoe,et al.  Aedes Aegypti The Yellow Fever Mosquito, Its Life History, Bionomics And Structure , 1962 .

[30]  R. Pal,et al.  Genetics of insect vectors of disease. , 1967, WHO chronicle.

[31]  S. Wessler,et al.  PIF- and Pong-like transposable elements: distribution, evolution and relationship with Tourist-like miniature inverted-repeat transposable elements. , 2004, Genetics.

[32]  J. Nap,et al.  Genetical genomics: the added value from segregation. , 2001, Trends in genetics : TIG.

[33]  O. Tomori Yellow Fever: The Recurring Plague , 2004, Critical reviews in clinical laboratory sciences.

[34]  Shih-Feng Tsai,et al.  Description of the Transcriptomes of Immune Response-Activated Hemocytes from the Mosquito Vectors Aedes aegypti and Armigeres subalbatus , 2004, Infection and Immunity.

[35]  Z. Tu,et al.  Gambol and Tc1 are two distinct families of DD34E transposons: analysis of the Anopheles gambiae genome expands the diversity of the IS630‐Tc1‐mariner superfamily , 2005, Insect molecular biology.