Getting directions from the hippocampus: The neural connection between looking and memory

Investigations into the neural basis of memory in human and non-human primates have focused on the hippocampus and associated medial temporal lobe (MTL) structures. However, how memory signals from the hippocampus affect motor actions is unknown. We propose that approaching this question through eye movement, especially by assessing the changes in looking behavior that occur with experience, is a promising method for exposing neural computations within the hippocampus. Here, we review how looking behavior is guided by memory in several ways, some of which have been shown to depend on the hippocampus, and how hippocampal neural signals are modulated by eye movements. Taken together, these findings highlight the need for future research on how MTL structures interact with the oculomotor system. Probing how the hippocampus reflects and impacts motor output during looking behavior renders a practical path to advance our understanding of the hippocampal memory system.

[1]  E. Zohary,et al.  Rapid Formation of Spatiotopic Representations As Revealed by Inhibition of Return , 2010, The Journal of Neuroscience.

[2]  J. Bisley,et al.  Been there, seen that: a neural mechanism for performing efficient visual search. , 2009, Journal of neurophysiology.

[3]  S. Zola,et al.  A Behavioral Task Predicts Conversion to Mild Cognitive Impairment and Alzheimer’s Disease , 2013, American journal of Alzheimer's disease and other dementias.

[4]  J L Ringo,et al.  Activity linked to externally cued saccades in single units recorded from hippocampal, parahippocampal, and inferotemporal areas of macaques. , 1997, Journal of neurophysiology.

[5]  B Suresh Krishna,et al.  Surround Suppression Sharpens the Priority Map in the Lateral Intraparietal Area , 2022 .

[6]  L. Standing Learning 10,000 pictures. , 1973, The Quarterly journal of experimental psychology.

[7]  Mary Hayhoe,et al.  Eye Movements, Visual Search and Scene Memory, in an Immersive Virtual Environment , 2014, PloS one.

[8]  J L Ringo,et al.  Eye position‐sensitive units in hippocampal formation and in inferotemporal cortex of the Macaque monkey , 2000, The European journal of neuroscience.

[9]  D. Ballard,et al.  Eye guidance in natural vision: reinterpreting salience. , 2011, Journal of vision.

[10]  R. Klein,et al.  Searching for inhibition of return in visual search: A review , 2010, Vision Research.

[11]  G. E. Alexander,et al.  Neuron Activity Related to Short-Term Memory , 1971, Science.

[12]  Elizabeth A Buffalo,et al.  Recognition memory signals in the macaque hippocampus , 2009, Proceedings of the National Academy of Sciences.

[13]  Nathaniel J. Killian,et al.  A map of visual space in the primate entorhinal cortex , 2012, Nature.

[14]  A. Ennaceur,et al.  A new one-trial test for neurobiological studies of memory in rats. III. Spatial vs. non-spatial working memory , 1992, Behavioural Brain Research.

[15]  Is the functional connectivity within temporal lobe influenced by saccadic eye movements? , 2002, Journal of neurophysiology.

[16]  J. Bachevalier,et al.  The influence of context on recognition memory in monkeys: Effects of hippocampal, parahippocampal and perirhinal lesions , 2015, Behavioural Brain Research.

[17]  David J. Foster,et al.  Memory and Space: Towards an Understanding of the Cognitive Map , 2015, The Journal of Neuroscience.

[18]  D. Robinson Eye movements evoked by collicular stimulation in the alert monkey. , 1972, Vision research.

[19]  D. E. Irwin,et al.  Eye movements and scene perception: Memory for things observed , 2002, Perception & psychophysics.

[20]  Ilona M. Bloem,et al.  Scrutinizing visual images: The role of gaze in mental imagery and memory , 2014, Cognition.

[21]  G. Loftus Eye fixations and recognition memory for pictures , 1972 .

[22]  R. Wurtz,et al.  A Pathway in Primate Brain for Internal Monitoring of Movements , 2002, Science.

[23]  Wilson S. Geisler,et al.  Natural systems analysis , 2008, Electronic Imaging.

[24]  Simon Barthelmé,et al.  Modeling fixation locations using spatial point processes. , 2012, Journal of vision.

[25]  R. Wurtz,et al.  Brain circuits for the internal monitoring of movements. , 2008, Annual review of neuroscience.

[26]  Michael J. Jutras,et al.  Oscillatory activity in the monkey hippocampus during visual exploration and memory formation , 2013, Proceedings of the National Academy of Sciences.

[27]  J. Findlay,et al.  Active Vision: The Psychology of Looking and Seeing , 2003 .

[28]  H. Eichenbaum,et al.  Can We Reconcile the Declarative Memory and Spatial Navigation Views on Hippocampal Function? , 2014, Neuron.

[29]  Elizabeth A. Buffalo,et al.  Oscillatory correlates of memory in non-human primates , 2014, NeuroImage.

[30]  J. Delacour,et al.  A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data , 1988, Behavioural Brain Research.

[31]  J. Gold,et al.  Representation of a perceptual decision in developing oculomotor commands , 2000, Nature.

[32]  J. O’Keefe Place units in the hippocampus of the freely moving rat , 1976, Experimental Neurology.

[33]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[34]  L. Squire,et al.  The visual paired-comparison task as a measure of declarative memory. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[35]  W T Newsome,et al.  Target selection for saccadic eye movements: prelude activity in the superior colliculus during a direction-discrimination task. , 2001, Journal of neurophysiology.

[36]  Philip C. Ko,et al.  Memory‐related eye movements challenge behavioral measures of pattern completion and pattern separation , 2014, Hippocampus.

[37]  V. Mountcastle,et al.  Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. , 1975, Journal of neurophysiology.

[38]  J. Gold,et al.  Caudate Encodes Multiple Computations for Perceptual Decisions , 2010, The Journal of Neuroscience.

[39]  M. Johansson,et al.  Look Here, Eye Movements Play a Functional Role in Memory Retrieval , 2014, Psychological science.

[40]  H. Sakata,et al.  Context-dependent place-selective responses of the neurons in the medial parietal region of macaque monkeys. , 2010, Cerebral cortex.

[41]  N. J. Cohen,et al.  Eye-movement-based memory effect: a reprocessing effect in face perception. , 1999, Journal of experimental psychology. Learning, memory, and cognition.

[42]  Steve M. Potter,et al.  Saccade direction encoding in the primate entorhinal cortex during visual exploration , 2015, Proceedings of the National Academy of Sciences.

[43]  Carolina M. Zingale,et al.  Planning sequences of saccades , 1987, Vision Research.

[44]  Michael L Platt,et al.  Allocentric Spatial Referencing of Neuronal Activity in Macaque Posterior Cingulate Cortex , 2006, The Journal of Neuroscience.

[45]  Hisao Nishijo,et al.  The relationship between monkey hippocampus place-related neural activity and action in space , 1997, Neuroscience Letters.

[46]  M. Hasselmo,et al.  Stimulation in Hippocampal Region CA1 in Behaving Rats Yields Long-Term Potentiation when Delivered to the Peak of Theta and Long-Term Depression when Delivered to the Trough , 2003, The Journal of Neuroscience.

[47]  Solmaz Shariat Torbaghan,et al.  Inhibition of return in a visual foraging task in non-human subjects , 2012, Vision Research.

[48]  I. Fried,et al.  Direct recordings of grid-like neuronal activity in human spatial navigation , 2013, Nature Neuroscience.

[49]  Peter Lakatos,et al.  Dynamics of Active Sensing and perceptual selection , 2010, Current Opinion in Neurobiology.

[50]  Rodrigo Montefusco-Siegmund,et al.  Saccades during visual exploration align hippocampal 3–8 Hz rhythms in human and non-human primates , 2013, Front. Syst. Neurosci..

[51]  J. Fagan Memory in the infant. , 1970, Journal of experimental child psychology.

[52]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: III. Cortical efferents , 2003, The Journal of comparative neurology.

[53]  P. Goldman-Rakic,et al.  Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. , 1989, Journal of neurophysiology.

[54]  Patricia S. Goldman-Rakic,et al.  Viewing preferences of rhesus monkeys related to memory for complex pictures, colours and faces , 1994, Behavioural Brain Research.

[55]  O. Pascalis,et al.  Change in background context disrupts performance on visual paired comparison following hippocampal damage , 2009, Neuropsychologia.

[56]  T. Sejnowski,et al.  A critique of pure vision , 1993 .

[57]  R. Clark,et al.  Impaired Recognition Memory in Monkeys after Damage Limited to the Hippocampal Region , 2000, The Journal of Neuroscience.

[58]  N. Humphrey ‘Interest’ and ‘Pleasure’: Two Determinants of a Monkey's Visual Preferences , 1972, Perception.

[59]  Arne D. Ekstrom,et al.  Cellular networks underlying human spatial navigation , 2003, Nature.

[60]  Robert E. Clark,et al.  Impaired Recognition Memory in Rats after Damage to the Hippocampus , 2000, The Journal of Neuroscience.

[61]  C. Koch,et al.  Category-specific visual responses of single neurons in the human medial temporal lobe , 2000, Nature Neuroscience.

[62]  R U Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  J. Lisman,et al.  Bidirectional synaptic plasticity induced by a single burst during cholinergic theta oscillation in CA1 in vitro , 1995, Neuron.

[64]  J. Hyvärinen,et al.  Saccade and blinking evoked by microstimulation of the posterior parietal association cortex of the monkey , 2004, Experimental Brain Research.

[65]  D. Amaral,et al.  Macaque monkey retrosplenial cortex: II. Cortical afferents , 2003, The Journal of comparative neurology.

[66]  Nick C Fox,et al.  Gene-Wide Analysis Detects Two New Susceptibility Genes for Alzheimer's Disease , 2014, PLoS ONE.

[67]  Robert H. Wurtz,et al.  Influence of the thalamus on spatial visual processing in frontal cortex , 2006, Nature.

[68]  Raymond Klein,et al.  Inhibitory tagging system facilitates visual search , 1988, Nature.

[69]  R. Wurtz,et al.  What the brain stem tells the frontal cortex. I. Oculomotor signals sent from superior colliculus to frontal eye field via mediodorsal thalamus. , 2004, Journal of neurophysiology.

[70]  B. C. Motter,et al.  The guidance of eye movements during active visual search , 1998, Vision Research.

[71]  E. Rolls,et al.  Spatial view cells in the primate hippocampus: allocentric view not head direction or eye position or place. , 1999, Cerebral cortex.

[72]  Wilsaan M. Joiner,et al.  Neuronal mechanisms for visual stability: progress and problems , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[73]  E. Szabadi,et al.  Functional Neuroanatomy of the Noradrenergic Locus Coeruleus: Its Roles in the Regulation of Arousal and Autonomic Function Part II: Physiological and Pharmacological Manipulations and Pathological Alterations of Locus Coeruleus Activity in Humans , 2008, Current neuropharmacology.

[74]  Ehud Zohary,et al.  Accumulation of visual information across multiple fixations. , 2009, Journal of vision.

[75]  Ueli Rutishauser,et al.  Pupil size signals novelty and predicts later retrieval success for declarative memories of natural scenes. , 2013, Journal of vision.

[76]  Michael J. Spivey,et al.  Oculomotor mechanisms activated by imagery and memory: eye movements to absent objects , 2001, Psychological research.

[77]  M. Shadlen,et al.  Neural correlates of a decision in the dorsolateral prefrontal cortex of the macaque , 1999, Nature Neuroscience.

[78]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[79]  J. Bachevalier,et al.  The Hippocampal/Parahippocampal Regions and Recognition Memory: Insights from Visual Paired Comparison versus Object-Delayed Nonmatching in Monkeys , 2004, The Journal of Neuroscience.

[80]  L. Stark,et al.  Spontaneous Eye Movements During Visual Imagery Reflect the Content of the Visual Scene , 1997, Journal of Cognitive Neuroscience.

[81]  N. Cohen,et al.  Amnesia is a Deficit in Relational Memory , 2000, Psychological science.

[82]  N. P. Bichot,et al.  A Source for Feature-Based Attention in the Prefrontal Cortex , 2015, Neuron.

[83]  E. Rolls,et al.  Head direction cells in the primate pre‐subiculum , 1999, Hippocampus.

[84]  J. Bachevalier,et al.  Limbic-dependent recognition memory in monkeys develops early in infancy. , 1993, Neuroreport.

[85]  R. Haber,et al.  Perception and memory for pictures: Single-trial learning of 2500 visual stimuli , 1970 .

[86]  M. D. Crutcher,et al.  Eye Tracking During a Visual Paired Comparison Task as a Predictor of Early Dementia , 2009, American journal of Alzheimer's disease and other dementias.

[87]  Michael J. Jutras,et al.  Synchronous neural activity and memory formation , 2010, Current Opinion in Neurobiology.

[88]  Matthew D. Hilchey,et al.  Oculomotor inhibition of return: How soon is it “recoded” into spatiotopic coordinates? , 2012, Attention, Perception, & Psychophysics.

[89]  E. Rolls,et al.  Allocentric and egocentric spatial information processing in the hippocampal formation of the behaving primate , 1991, Psychobiology.

[90]  Ramona O. Hopkins,et al.  Experience-Dependent Eye Movements, Awareness, and Hippocampus-Dependent Memory , 2006, The Journal of Neuroscience.

[91]  K. Nakamura,et al.  Monkey hippocampal neurons related to spatial and nonspatial functions. , 1993, Journal of neurophysiology.

[92]  Alexandros Kafkas,et al.  Recognition Memory Strength is Predicted by Pupillary Responses at Encoding While Fixation Patterns Distinguish Recollection from Familiarity , 2011, Quarterly journal of experimental psychology.

[93]  M. Moser,et al.  A prefrontal–thalamo–hippocampal circuit for goal-directed spatial navigation , 2015, Nature.

[94]  U. Rutishauser,et al.  Representation of retrieval confidence by single neurons in the human medial temporal lobe , 2015, Nature Neuroscience.

[95]  Bruno Laeng,et al.  Eye scanpaths during visual imagery reenact those of perception of the same visual scene , 2002, Cogn. Sci..

[96]  Stanislaw Sobotka,et al.  Saccadic eye movements, even in darkness, generate event-related potentials recorded in medial septum and medial temporal cortex , 1997, Brain Research.

[97]  L. Squire,et al.  Experience-Dependent Eye Movements Reflect Hippocampus-Dependent (Aware) Memory , 2008, The Journal of Neuroscience.

[98]  Iain D Gilchrist,et al.  Refixation frequency and memory mechanisms in visual search , 2000, Current Biology.

[99]  Hideo Sakata,et al.  Navigation-associated medial parietal neurons in monkeys , 2006, Proceedings of the National Academy of Sciences.

[100]  Umesh Rajashekar,et al.  Visual Memory for Fixated Regions of Natural Images Dissociates Attraction and Recognition , 2009, Perception.

[101]  A. Fuchs,et al.  Eye movements evoked by stimulation of frontal eye fields. , 1969, Journal of neurophysiology.

[102]  R. Andersen,et al.  Memory related motor planning activity in posterior parietal cortex of macaque , 1988, Experimental Brain Research.

[103]  R. Shepard Recognition memory for words, sentences, and pictures , 1967 .

[104]  Greg D. Reynolds,et al.  Infant visual attention and object recognition , 2015, Behavioural Brain Research.

[105]  G R Loftus,et al.  The functional visual field during picture viewing. , 1980, Journal of experimental psychology. Human learning and memory.

[106]  P. Fries,et al.  Gamma-Band Synchronization in the Macaque Hippocampus and Memory Formation , 2009, The Journal of Neuroscience.

[107]  B. Laeng,et al.  Eye scanpaths during visual imagery reenact those of perception of the same visual scene , 2002 .

[108]  Barbara Anne Dosher,et al.  Task precision at transfer determines specificity of perceptual learning. , 2009, Journal of vision.

[109]  M. Posner,et al.  Components of visual orienting , 1984 .

[110]  Seth J. Ramus,et al.  Dissociation between the effects of damage to perirhinal cortex and area TE. , 1999, Learning & memory.

[111]  M. Bradley,et al.  Memory, emotion, and pupil diameter: Repetition of natural scenes. , 2015, Psychophysiology.

[112]  Dwight J. Kravitz,et al.  A new neural framework for visuospatial processing , 2011, Nature Reviews Neuroscience.

[113]  Mary M Hayhoe,et al.  Visual memory and motor planning in a natural task. , 2003, Journal of vision.

[114]  S. Hutton,et al.  Keeping an eye on the truth? Pupil size changes associated with recognition memory , 2011, Memory.

[115]  M. Land,et al.  The Roles of Vision and Eye Movements in the Control of Activities of Daily Living , 1998, Perception.

[116]  J L Ringo,et al.  Eye movements modulate activity in hippocampal, parahippocampal, and inferotemporal neurons. , 1994, Journal of neurophysiology.

[117]  B. Givens,et al.  Theta reset produces optimal conditions for long‐term potentiation , 2004, Hippocampus.

[118]  H. Power On the Use of the Ophthalmoscope in Diseases of the Nervous System and of the Kidneys; also in certain other General Disorders , 1871, Nature.

[119]  Deborah E. Hannula,et al.  Worth a Glance: Using Eye Movements to Investigate the Cognitive Neuroscience of Memory , 2010, Front. Hum. Neurosci..

[120]  L R Squire,et al.  On the development of declarative memory. , 1993, Journal of experimental psychology. Learning, memory, and cognition.

[121]  T. Moore,et al.  Parietal and prefrontal neurons driven to distraction , 2012, Nature Neuroscience.