Gravito-thermal transports, Onsager reciprocal relation and gravitational Wiedemann-Franz law
暂无分享,去创建一个
[1] Sijie Gao,et al. General Proof of the Tolman law , 2023, 2305.17307.
[2] B. R. Majhi. Laws of thermodynamic equilibrium through relativistic thermodynamics , 2023, 2304.11843.
[3] R. Narayan,et al. Black holes up close , 2023, Nature.
[4] Song Liu,et al. Covariant transport equation and gravito-conductivity in generic stationary spacetimes , 2022, The European Physical Journal C.
[5] Y. Hidaka,et al. Foundations and applications of quantum kinetic theory , 2022, Progress in Particle and Nuclear Physics.
[6] A. Grushin,et al. Thermal transport, geometry, and anomalies , 2021, Physics Reports.
[7] Hyeong-Chan Kim,et al. Local temperature in general relativity , 2021, Physical Review D.
[8] Rub'en O. Acuna-C'ardenas,et al. An introduction to the relativistic kinetic theory on curved spacetimes , 2021, General Relativity and Gravitation.
[9] Liu Zhao,et al. Relativistic transformation of thermodynamic parameters and refined Saha equation , 2021, SSRN Electronic Journal.
[10] P. Mach,et al. Accretion of Dark Matter onto a Moving Schwarzschild Black Hole: An Exact Solution. , 2021, Physical review letters.
[11] 和徳 秋山,et al. Event Horizon Telescopeの初期成果 , 2020 .
[12] A. Plastino,et al. Thermodynamic equilibrium in general relativity , 2019, Physical Review D.
[13] S. Succi,et al. Relativistic lattice Boltzmann methods: Theory and applications , 2019, Physics Reports.
[14] The Event Horizon Telescope Collaboration. First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole , 2019, 1906.11238.
[15] L. G. Medeiros,et al. Theoretical foundations of the reduced relativistic gas in the cosmological perturbed context , 2019, Journal of Cosmology and Astroparticle Physics.
[16] O. Sarbach,et al. Accretion of a relativistic, collisionless kinetic gas into a Schwarzschild black hole , 2016, 1611.02389.
[17] Lars Husdal,et al. Entropy production in a lepton-photon universe , 2016, Astrophysics and Space Science.
[18] D. Reitze. The Observation of Gravitational Waves from a Binary Black Hole Merger , 2016 .
[19] C. Goupil,et al. On the fundamental aspect of the first Kelvin's relation in thermoelectricity , 2016, 1602.07036.
[20] U. Heinz,et al. Analytic Solution of the Boltzmann Equation in an Expanding System. , 2015, Physical review letters.
[21] Carlo Cercignani,et al. The Relativistic Boltzmann Equation: Theory and Applications , 2012 .
[22] C. Rovelli,et al. Thermal time and Tolman–Ehrenfest effect: ‘temperature as the speed of time’ , 2010, 1005.2985.
[23] J. Herrmann. Diffusion in the general theory of relativity , 2010, 1003.3753.
[24] T.Padmanabhan. Thermodynamical Aspects of Gravity: New insights , 2009, 0911.5004.
[25] Zbigniew Haba. Relativistic diffusion with friction on a pseudo-Riemannian manifold , 2009, 0909.2880.
[26] Peter Hanggi,et al. Relativistic Brownian Motion , 2008, 0812.1996.
[27] F. Debbasch. A diffusion process in curved space–time , 2004 .
[28] U. Heinz. Kinetic theory for plasmas with non-Abelian interactions , 1983 .
[29] W. V. Leeuwen,et al. Relativistic Kinetic Theory: Principles and Applications , 1980 .
[30] J. M. Luttinger. Theory of Thermal Transport Coefficients , 1964 .
[31] W. Israel. Relativistic Kinetic Theory of a Simple Gas , 1963 .
[32] J. Weinberg,et al. THE INTERNAL STATE OF A GRAVITATING GAS , 1959 .
[33] Peter J. Price,et al. The Lorenz Number , 1957, IBM J. Res. Dev..
[34] H. Buchdahl. Temperature Equilibrium in a Stationary Gravitational Field , 1949 .
[35] O. Klein. On the Thermodynamical Equilibrium of Fluids in Gravitational Fields , 1949 .
[36] P. Gombás,et al. Theory of Metals , 1946, Nature.
[37] H. B. G. Casimir,et al. On Onsager's Principle of Microscopic Reversibility , 1945 .
[38] L. Onsager. Reciprocal Relations in Irreversible Processes. II. , 1931 .
[39] R. Tolman,et al. Temperature equilibrium in a static gravitational field , 1930 .
[40] R. Tolman. On the Weight of Heat and Thermal Equilibrium in General Relativity , 1930 .
[41] Tao Wang,et al. Relativistic Stochastic Dynamics I: Langevin Equation from Observer’s Perspective , 2023 .
[42] D. Pavón. The Entropy of Hawking Radiation , 1987 .
[43] F. Jüttner. Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der Relativtheorie , 1911 .