Gravito-thermal transports, Onsager reciprocal relation and gravitational Wiedemann-Franz law

Using the near-detailed-balance distribution function obtained in our recent work, we present a set of covariant gravito-thermal transport equations for neutral relativistic gases in a generic stationary spacetime. All relevant tensorial transport coefficients are worked out and are presented using some particular integration functions in $(\alpha,\zeta)$, where $\alpha = -\beta\mu$ and $\zeta =\beta m$ is the relativistic coldness, with $\beta$ being the inverse temperature and $\mu$ being the chemical potential. It is shown that the Onsager reciprocal relation holds in the gravito-thermal transport phenomena, and that the heat conductivity and the gravito-conductivity tensors are proportional to each other, with the coefficient of proportionality given by the product of the so-called Lorenz number with the temperature, thus proving a gravitational variant of the Wiedemann-Franz law. It is remarkable that, for strongly degenerate Fermi gases, the Lorenz number takes a universal constant value $L=\pi^2/3$, which extends the Wiedemann-Franz law into the Wiedemann-Franz-Lorenz law.

[1]  Sijie Gao,et al.  General Proof of the Tolman law , 2023, 2305.17307.

[2]  B. R. Majhi Laws of thermodynamic equilibrium through relativistic thermodynamics , 2023, 2304.11843.

[3]  R. Narayan,et al.  Black holes up close , 2023, Nature.

[4]  Song Liu,et al.  Covariant transport equation and gravito-conductivity in generic stationary spacetimes , 2022, The European Physical Journal C.

[5]  Y. Hidaka,et al.  Foundations and applications of quantum kinetic theory , 2022, Progress in Particle and Nuclear Physics.

[6]  A. Grushin,et al.  Thermal transport, geometry, and anomalies , 2021, Physics Reports.

[7]  Hyeong-Chan Kim,et al.  Local temperature in general relativity , 2021, Physical Review D.

[8]  Rub'en O. Acuna-C'ardenas,et al.  An introduction to the relativistic kinetic theory on curved spacetimes , 2021, General Relativity and Gravitation.

[9]  Liu Zhao,et al.  Relativistic transformation of thermodynamic parameters and refined Saha equation , 2021, SSRN Electronic Journal.

[10]  P. Mach,et al.  Accretion of Dark Matter onto a Moving Schwarzschild Black Hole: An Exact Solution. , 2021, Physical review letters.

[11]  和徳 秋山,et al.  Event Horizon Telescopeの初期成果 , 2020 .

[12]  A. Plastino,et al.  Thermodynamic equilibrium in general relativity , 2019, Physical Review D.

[13]  S. Succi,et al.  Relativistic lattice Boltzmann methods: Theory and applications , 2019, Physics Reports.

[14]  The Event Horizon Telescope Collaboration First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole , 2019, 1906.11238.

[15]  L. G. Medeiros,et al.  Theoretical foundations of the reduced relativistic gas in the cosmological perturbed context , 2019, Journal of Cosmology and Astroparticle Physics.

[16]  O. Sarbach,et al.  Accretion of a relativistic, collisionless kinetic gas into a Schwarzschild black hole , 2016, 1611.02389.

[17]  Lars Husdal,et al.  Entropy production in a lepton-photon universe , 2016, Astrophysics and Space Science.

[18]  D. Reitze The Observation of Gravitational Waves from a Binary Black Hole Merger , 2016 .

[19]  C. Goupil,et al.  On the fundamental aspect of the first Kelvin's relation in thermoelectricity , 2016, 1602.07036.

[20]  U. Heinz,et al.  Analytic Solution of the Boltzmann Equation in an Expanding System. , 2015, Physical review letters.

[21]  Carlo Cercignani,et al.  The Relativistic Boltzmann Equation: Theory and Applications , 2012 .

[22]  C. Rovelli,et al.  Thermal time and Tolman–Ehrenfest effect: ‘temperature as the speed of time’ , 2010, 1005.2985.

[23]  J. Herrmann Diffusion in the general theory of relativity , 2010, 1003.3753.

[24]  T.Padmanabhan Thermodynamical Aspects of Gravity: New insights , 2009, 0911.5004.

[25]  Zbigniew Haba Relativistic diffusion with friction on a pseudo-Riemannian manifold , 2009, 0909.2880.

[26]  Peter Hanggi,et al.  Relativistic Brownian Motion , 2008, 0812.1996.

[27]  F. Debbasch A diffusion process in curved space–time , 2004 .

[28]  U. Heinz Kinetic theory for plasmas with non-Abelian interactions , 1983 .

[29]  W. V. Leeuwen,et al.  Relativistic Kinetic Theory: Principles and Applications , 1980 .

[30]  J. M. Luttinger Theory of Thermal Transport Coefficients , 1964 .

[31]  W. Israel Relativistic Kinetic Theory of a Simple Gas , 1963 .

[32]  J. Weinberg,et al.  THE INTERNAL STATE OF A GRAVITATING GAS , 1959 .

[33]  Peter J. Price,et al.  The Lorenz Number , 1957, IBM J. Res. Dev..

[34]  H. Buchdahl Temperature Equilibrium in a Stationary Gravitational Field , 1949 .

[35]  O. Klein On the Thermodynamical Equilibrium of Fluids in Gravitational Fields , 1949 .

[36]  P. Gombás,et al.  Theory of Metals , 1946, Nature.

[37]  H. B. G. Casimir,et al.  On Onsager's Principle of Microscopic Reversibility , 1945 .

[38]  L. Onsager Reciprocal Relations in Irreversible Processes. II. , 1931 .

[39]  R. Tolman,et al.  Temperature equilibrium in a static gravitational field , 1930 .

[40]  R. Tolman On the Weight of Heat and Thermal Equilibrium in General Relativity , 1930 .

[41]  Tao Wang,et al.  Relativistic Stochastic Dynamics I: Langevin Equation from Observer’s Perspective , 2023 .

[42]  D. Pavón The Entropy of Hawking Radiation , 1987 .

[43]  F. Jüttner Das Maxwellsche Gesetz der Geschwindigkeitsverteilung in der Relativtheorie , 1911 .