Mean-Variance Hedging on Uncertain Time Horizon in a Market with a Jump

In this work, we study the problem of mean-variance hedging with a random horizon T∧τ, where T is a deterministic constant and τ is a jump time of the underlying asset price process. We first formulate this problem as a stochastic control problem and relate it to a system of BSDEs with a jump. We then provide a verification theorem which gives the optimal strategy for the mean-variance hedging using the solution of the previous system of BSDEs. Finally, we prove that this system of BSDEs admits a solution via a decomposition approach coming from filtration enlargement theory.

[1]  L. Dubins,et al.  ON CONTINUOUS MARTINGALES. , 1965, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Martin T. Barlow,et al.  Study of a filtration expanded to include an honest time , 1978 .

[3]  N. Kazamaki A sufficient condition for the uniform integrability of exponential martingales , 1979 .

[4]  Équations différentielles stochastiques lipschitziennes : étude de la stabilité , 1979 .

[5]  T. Jeulin Semi-Martingales et Grossissement d’une Filtration , 1980 .

[6]  M. Yor,et al.  Grossissements de filtrations: exemples et applications , 1985 .

[7]  Jia-An Yan,et al.  Semimartingale Theory and Stochastic Calculus , 1992 .

[8]  Walter Schachermayer,et al.  The variance-optimal martingale measure for continuous processes , 1996 .

[9]  M. Schweizer Approximation pricing and the variance-optimal martingale measure , 1996 .

[10]  S. Peng,et al.  Backward Stochastic Differential Equations in Finance , 1997 .

[11]  G. Barles,et al.  Backward stochastic differential equations and integral-partial differential equations , 1997 .

[12]  H. Pham,et al.  Mean‐Variance Hedging and Numéraire , 1998 .

[13]  Huyên Pham,et al.  Dynamic programming and mean-variance hedging , 1999, Finance Stochastics.

[14]  R. Jarrow,et al.  Counterparty Risk and the Pricing of Defaultable Securities , 1999 .

[15]  M. Kobylanski Backward stochastic differential equations and partial differential equations with quadratic growth , 2000 .

[16]  Andrew E. B. Lim,et al.  Mean-Variance Portfolio Selection with Random Parameters in a Complete Market , 2002, Math. Oper. Res..

[17]  Andrew E. B. Lim Quadratic Hedging and Mean-Variance Portfolio Selection with Random Parameters in an Incomplete Market , 2004, Math. Oper. Res..

[18]  T. Bielecki,et al.  Credit Risk: Modeling, Valuation And Hedging , 2004 .

[19]  Takuji Arai,et al.  An extension of mean-variance hedging to the discontinuous case , 2005, Finance Stochastics.

[20]  Andrew E. B. Lim Mean-Variance Hedging When There Are Jumps , 2005, SIAM J. Control. Optim..

[21]  P. Imkeller,et al.  Utility maximization in incomplete markets , 2005, math/0508448.

[22]  Huyen Pham,et al.  Stochastic control under progressive enlargement of filtrations and applications to multiple defaults risk management , 2010, 1001.0206.

[23]  Christophette Blanchet-Scalliet,et al.  CREDIT RISK PREMIA AND QUADRATIC BSDEs WITH A SINGLE JUMP , 2009, 0907.1221.

[24]  M. Schweizer,et al.  Mean-Variance Hedging via Stochastic Control and BSDEs for General Semimartingales , 2012, 1211.6820.