Deconvolution of Cyclic Voltammograms for Blended Lithium Insertion Compounds by using a Model‐Like Blend Electrode

[1]  Thierry Douillard,et al.  Multiscale Morphological and Electrical Characterization of Charge Transport Limitations to the Power Performance of Positive Electrode Blends for Lithium‐Ion Batteries , 2017 .

[2]  E. Maire,et al.  Multiscale morphological characterization of process induced heterogeneities in blended positive electrodes for lithium–ion batteries , 2017, Journal of Materials Science.

[3]  A. Michaelis,et al.  Temperature induced compositional redistribution in blended insertion electrodes , 2017 .

[4]  K. Zaghib,et al.  Olivine-Based Blended Compounds as Positive Electrodes for Lithium Batteries , 2016 .

[5]  T. Masese,et al.  Ionic Conduction in Lithium Ion Battery Composite Electrode Governs Cross-sectional Reaction Distribution , 2016, Scientific Reports.

[6]  M. Wohlfahrt‐Mehrens,et al.  Synergetic effects of LiFe0.3Mn0.7PO4–LiMn1.9Al0.1O4 blend electrodes , 2016 .

[7]  A. Michaelis,et al.  Analysis of the counter-electrode potential in a 3-electrode lithium ion battery cell , 2015 .

[8]  Alexander Michaelis,et al.  Investigation of charge transfer kinetics of Li-Intercalation in LiFePO4 , 2015 .

[9]  F. Du,et al.  Electrochemical performance of LiMn2O4/LiFePO4 blend cathodes for lithium ion batteries , 2015, Chemical Research in Chinese Universities.

[10]  Lingyun Liu,et al.  A review of blended cathode materials for use in Li-ion batteries , 2014 .

[11]  K. Gallagher,et al.  xLi2MnO3·(1 − x)LiMO2 blended with LiFePO4 to achieve high energy density and pulse power capability , 2011 .

[12]  Ki-Soo Lee,et al.  AlF3-coated LiCoO2 and Li[Ni1/3Co1/3Mn1/3]O2 blend composite cathode for lithium ion batteries , 2011 .

[13]  H. Tran,et al.  LiMn2O4 Spinel/LiNi0.8Co0.15Al0.05O2 Blends as Cathode Materials for Lithium-Ion Batteries , 2011 .

[14]  S. Pejovnik,et al.  On the Interpretation of Measured Impedance Spectra of Insertion Cathodes for Lithium-Ion Batteries , 2010 .

[15]  John Newman,et al.  Experiments on and Modeling of Positive Electrodes with Multiple Active Materials for Lithium-Ion Batteries , 2009 .

[16]  Arumugam Manthiram,et al.  Eliminating the irreversible capacity loss of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode by blending with other lithium insertion hosts , 2009 .

[17]  K. Nahm,et al.  Electrochemical studies on cathode blends of LiMn2O4 and Li[Li1/15Ni1/5Co2/5Mn1/3O2] , 2008 .

[18]  Robert Dominko,et al.  The Importance of Interphase Contacts in Li Ion Electrodes: The Meaning of the High-Frequency Impedance Arc , 2008 .

[19]  K. Zaghib,et al.  Dual active material composite cathode structures for Li-ion batteries , 2008 .

[20]  Williams Agyei Appiah,et al.  Comparative study on experiments and simulation of blended cathode active materials for lithium ion batteries , 2016 .

[21]  M. Wohlfahrt‐Mehrens,et al.  Origin of the Synergetic Effects of LiFe0.3Mn0.7PO4 – Spinel Blends via Dynamic In Situ X-ray Diffraction Measurements , 2016 .

[22]  J. C. Burns,et al.  Synergies in Blended LiMn2O4 and Li[Ni1/3Mn1/3Co1/3]O2 Positive Electrodes , 2012 .