Micromechanics senses biomolecules

Abstract How can microelectromechanical systems (MEMS) experts support molecular biologists in studying DNA hybridization? Cantilever-based devices are an example of how a ‘simple’ sensor can be tailored by microfabrication techniques and used to achieve an unprecedented performance. We review fascinating experiments, which use different mechanical transduction principles for detecting and analyzing small quantities of materials. The principles of these experiments allow biologists to study surface biochemistry on a nano-scale and offer new, exciting opportunities in developing microscopic biomedical analysis systems with unique characteristics. Cantilever sensors rely on relatively well known and simple transduction principles, and have attracted the interest of many researchers. This is, at least in part, because of the merging of silicon microfabrication techniques and surface functionalization biochemistry, together with the development of multi-cantilever sensing methods offering new opportunities in physical and (bio)chemical sensing.

[1]  Harald Ibach,et al.  The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures , 1997 .

[2]  Thomas Thundat,et al.  Vapor detection using resonating microcantilevers , 1995 .

[3]  A. I. Rusanov Thermodynamics of solid surfaces , 1996 .

[4]  Peter Vettiger,et al.  Sequential position readout from arrays of micromechanical cantilever sensors , 1998 .

[5]  Anja Boisen,et al.  Noise in piezoresistive atomic force microscopy , 1999 .

[6]  M. Petty,et al.  Langmuir-Blodgett films , 1983 .

[7]  H. Ibach,et al.  Adsorbate‐induced surface stress , 1994 .

[8]  K. Dahmen,et al.  Bending of crystalline plates under the influence of surface stress — a finite element analysis , 2000 .

[9]  Richard J. Colton,et al.  Biosensor based on force microscope technology , 1996 .

[10]  H. Lang,et al.  Combination of single crystal zeolites and microfabrication: Two applications towards zeolite nanodevices , 1998 .

[11]  Roberto Raiteri,et al.  Changes in surface stress at the liquid:solid interface measured with a microcantilever , 2000 .

[12]  N. D. Rooij,et al.  Scanning force microscopy in the dynamic mode using microfabricated capacitive sensors , 1996 .

[13]  Fuhrmann,et al.  Finite element calculations and fabrication of cantilever sensors for nanoscale detection , 2000, Ultramicroscopy.

[14]  J. Hoh,et al.  A biosensor based on micromechanical interrogation of living cells. , 1997, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[15]  R. Linford The derivation of thermodynamic equations for solid surfaces , 1978 .

[16]  Howard H. Weetall,et al.  [10] Covalent coupling methods for inorganic support materials , 1976 .

[17]  James K. Gimzewski,et al.  Thermal analysis using a micromechanical calorimeter , 1996 .

[18]  I. Aksay,et al.  Simultaneous liquid viscosity and density determination with piezoelectric unimorph cantilevers , 2001 .

[19]  H. Güntherodt,et al.  Picojoule and submillisecond calorimetry with micromechanical probes , 1998 .

[20]  J. E. Stern,et al.  Force microscope using a fiber‐optic displacement sensor , 1988 .

[21]  F. Schreiber Structure and growth of self-assembling monolayers , 2000 .

[22]  Emily B. Cooper,et al.  High-resolution micromachined interferometric accelerometer , 2000 .

[23]  James K. Gimzewski,et al.  Micromechanics: a toolbox for femtoscale science: “Towards a laboratory on a tip” , 1997 .

[24]  C. Quate,et al.  Interdigital cantilevers for atomic force microscopy , 1996 .

[25]  T. Thundat,et al.  Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches. , 2001, Analytical chemistry.

[26]  C. Brinker,et al.  Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing , 1990 .

[27]  Teodor Gotszalk,et al.  Characterization of a cantilever with an integrated deflection sensor , 1995 .

[28]  Hans-Jürgen Butt,et al.  A Sensitive Method to Measure Changes in the Surface Stress of Solids , 1996 .

[29]  H. Rothuizen,et al.  Translating biomolecular recognition into nanomechanics. , 2000, Science.

[30]  C. Riener,et al.  Recognition Force Spectroscopy Studies of the NTA-His6 Bond , 2000 .

[31]  T. Thundat,et al.  Bioassay of prostate-specific antigen (PSA) using microcantilevers , 2001, Nature Biotechnology.

[32]  A. Plückthun,et al.  Antigen binding forces of individually addressed single-chain Fv antibody molecules. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[33]  Panos G. Datskos,et al.  Selectivity of chemical sensors based on micro-cantilevers coated with thin polymer films , 2000 .

[34]  Gang-yu Liu,et al.  Atomic Force Microscopic Study of Specific Antigen/Antibody Binding , 1997 .

[35]  J. K. Gimzewski,et al.  Photothermal spectroscopy with femtojoule sensitivity using a micromechanical device , 1994, Nature.

[36]  Thomas W. Kenny,et al.  Ultrahigh-density atomic force microscopy data storage with erase capability , 1999 .

[37]  A. Majumdar,et al.  Infrared vision using uncooled micro-optomechanical camera , 1999 .

[38]  David A. Kidwell,et al.  Sensing Discrete Streptavidin-Biotin Interactions with Atomic Force Microscopy , 1994 .

[39]  H. Craighead,et al.  Mechanical resonant immunospecific biological detector , 2000 .

[40]  Ute Drechsler,et al.  The "Millipede"-More than thousand tips for future AFM storage , 2000, IBM J. Res. Dev..

[41]  Panos G. Datskos,et al.  Uncooled thermal imaging using a piezoresistive microcantilever , 1996 .

[42]  Panos G. Datskos,et al.  Remote infrared radiation detection using piezoresistive microcantilevers , 1996 .

[43]  M. Sepaniak,et al.  Modification of micro-cantilever sensors with sol-gels to enhance performance and immobilize chemically selective phases. , 2000, Talanta.

[44]  M. Miles,et al.  Chemical sensors and biosensors in liquid environment based on microcantilevers with amplified quality factor. , 2001, Ultramicroscopy.

[45]  H. Gaub,et al.  Adhesion forces between individual ligand-receptor pairs. , 1994, Science.

[46]  Nabil Ahmed,et al.  Measurement of solution viscosity by atomic force microscopy , 2001 .

[47]  R. Nuzzo,et al.  Synthesis, Structure, and Properties of Model Organic Surfaces , 1992 .

[48]  Thomas Thundat,et al.  Micromechanical sensors for chemical and physical measurements , 1995 .

[49]  A K Chakraborty,et al.  Origin of nanomechanical cantilever motion generated from biomolecular interactions. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Drechsler,et al.  A cantilever array-based artificial nose , 2000, Ultramicroscopy.

[51]  T. Thundat,et al.  Manipulation and controlled amplification of Brownian motion of microcantilever sensors , 2001 .

[52]  C. Quate,et al.  Atomic resolution with an atomic force microscope using piezoresistive detection , 1993 .

[53]  James K. Gimzewski,et al.  Observation of a chemical reaction using a micromechanical sensor , 1994 .

[54]  M. Hegner,et al.  Specific antigen/antibody interactions measured by force microscopy. , 1996, Biophysical journal.

[55]  M. Welland,et al.  Measuring Surface-Induced Conformational Changes in Proteins , 1999 .

[56]  Thomas Thundat,et al.  Chemical sensing in Fourier space , 2000, Applied Physics Letters.

[57]  M. Welland,et al.  Microcantilever-based biosensors , 2000, Ultramicroscopy.

[58]  Panos G. Datskos,et al.  Remote optical detection using microcantilevers , 1996 .

[59]  Calvin F. Quate,et al.  Microfabrication of cantilever styli for the atomic force microscope , 1990 .

[60]  James K. Gimzewski,et al.  Surface stress in the self-assembly of alkanethiols on gold , 1997 .

[61]  A. Boisen,et al.  Cantilever-based bio-chemical sensor integrated in a microliquid handling system , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[62]  Thomas Thundat,et al.  Viscous drag measurements utilizing microfabricated cantilevers , 1996 .

[63]  E. Bamberg,et al.  Scan speed limit in atomic force microscopy , 1993 .

[64]  H Schindler,et al.  Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[65]  H. Weetall,et al.  Trypsin and Papain Covalently Coupled to Porous Glass: Preparation and Characterization , 1969, Science.

[66]  O. Wolter,et al.  Micromachined silicon sensors for scanning force microscopy , 1991 .

[67]  Abdullah Atalar,et al.  Analysis and design of an interdigital cantilever as a displacement sensor , 1998 .

[68]  James K. Gimzewski,et al.  Micromechanical Calorimeter with Picojoule-Sensitivity , 1995 .

[69]  Thomas Thundat,et al.  Thermal and ambient-induced deflections of scanning force microscope cantilevers , 1994 .