Nonconventional ergodic averages and nilmanifolds

We study the L2-convergence of two types of ergodic averages. The first is the average of a product of functions evaluated at return times along arithmetic progressions, such as the expressions appearing in Furstenberg?fs proof of Szemer?Ledi?fs theorem. The second average is taken along cubes whose sizes tend to +??. For each average, we show that it is sufficient to prove the convergence for special systems, the characteristic factors. We build these factors in a general way, independent of the type of the average. To each of these factors we associate a natural group of transformations and give them the structure of a nilmanifold. From the second convergence result we derive a combinatorial interpretation for the arithmetic structure inside a set of integers of positive upper density.

[1]  E. Lesigne Sur une nil-variété, les parties minimales associées à une translation sont uniquement ergodiques , 1991, Ergodic Theory and Dynamical Systems.

[2]  Bryna Kra,et al.  An odd Furstenberg-Szemerédi theorem and quasi-affine systems , 2002 .

[3]  J. Bourgain Pointwise ergodic theorems for arithmetic sets , 1989 .

[4]  Louis Auslander,et al.  Flows on Homogeneous Spaces , 1963 .

[5]  Alain Louveau,et al.  The Multifarious Poincaré Recurrence Theorem , 2000 .

[6]  E. Lesigne Théorèmes ergodiques pour une translation sur un nilvariété , 1989, Ergodic Theory and Dynamical Systems.

[7]  J. Conze,et al.  Théorèmes ergodiques pour des mesures diagonales , 1984 .

[8]  H. Furstenberg Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .

[9]  Equations fonctionnelles, couplages de produits gauches et théorèmes ergodiques pour mesures diagonales , 1993 .

[10]  V. Varadarajan Geometry of quantum theory , 1968 .

[11]  A. Khintchine,et al.  Eine Verschärfung des Poincaréschen “Wiederkehrsatzes” , 1935 .

[12]  D. Montgomery,et al.  Topological Transformation Groups , 1956 .

[13]  Vitaly Bergelson,et al.  An Ergodic IP Polynomial Szemerédi Theorem , 2000 .

[14]  W. T. Gowers,et al.  A new proof of Szemerédi's theorem , 2001 .

[15]  Bryna Kra,et al.  Averaging Along Cubes , 2004 .

[16]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[17]  V. G. Mkhitaryan,et al.  On a class of homogeneous spaces of compact Lie groups , 1981 .

[18]  Marina Ratner,et al.  On Raghunathan’s measure conjecture , 1991 .

[19]  T. Ziegler A non-conventional ergodic theorem for a nilsystem , 2002, Ergodic Theory and Dynamical Systems.

[20]  William Parry,et al.  Dynamical systems on nilmanifolds , 1970 .

[21]  W. Parry ERGODIC PROPERTIES OF AFFINE TRANSFORMATIONS AND FLOWS ON NILMANIFOLDS. , 1969 .

[22]  V. Bergelson Weakly mixing PET , 1987, Ergodic Theory and Dynamical Systems.

[23]  Bryna Kra,et al.  Convergence of Conze–Lesigne averages , 2001, Ergodic Theory and Dynamical Systems.

[24]  Théorèmes ergodiques ponctuels pour des mesures diagonales. Cas des systèmes distaux , 1987 .

[25]  J. Conze,et al.  Sur un théorème ergodique pour des mesures diagonales , 1988 .

[26]  A. Leibman Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold , 2004, Ergodic Theory and Dynamical Systems.

[27]  W. T. Gowers,et al.  A NEW PROOF OF SZEMER ´ EDI'S THEOREM , 2001 .

[28]  H. Furstenberg,et al.  Strict Ergodicity and Transformation of the Torus , 1961 .

[29]  R. Zimmer Extensions of ergodic group actions , 1976 .

[30]  K. Schmidt,et al.  Coboundaries and Homomorphisms for Non‐Singular Actions and a Problem of H. Helson , 1980 .