Toxicity of vegetable oils to the coconut mite Aceria guerreronis and selectivity against the predator Neoseiulus baraki

[1]  N. El-Wakeil Retraction Note to: Botanical Pesticides and Their Mode of Action , 2018, Gesunde Pflanzen.

[2]  R. Guedes,et al.  Population-level effects of abamectin, azadirachtin and fenpyroximate on the predatory mite Neoseiulus baraki , 2016, Experimental and Applied Acarology.

[3]  J. W. Melo,et al.  Estimated crop loss due to coconut mite and financial analysis of controlling the pest using the acaricide abamectin , 2016, Experimental and Applied Acarology.

[4]  J. Stark,et al.  Pesticide-Induced Stress in Arthropod Pests for Optimized Integrated Pest Management Programs. , 2016, Annual review of entomology.

[5]  R. Pavela Essential oils for the development of eco-friendly mosquito larvicides: A review , 2015 .

[6]  Qiyong Liu,et al.  Larvicidal activity of the essential oil from Tetradium glabrifolium fruits and its constituents against Aedes albopictus. , 2015, Pest management science.

[7]  M. Sabelis,et al.  Evidence of Amblyseius largoensis and Euseius alatus as biological control agent of Aceria guerreronis , 2015, Experimental and Applied Acarology.

[8]  Paul Graham,et al.  Desert Ants Locate Food by Combining High Sensitivity to Food Odors with Extensive Crosswind Runs , 2014, Current Biology.

[9]  S. Sims,et al.  Topical and Vapor Toxicity of Saturated Fatty Acids to the German Cockroach (Dictyoptera: Blattellidae) , 2014, Journal of economic entomology.

[10]  M. Grieneisen,et al.  Botanical insecticide research: many publications, limited useful data. , 2014, Trends in plant science.

[11]  I. Khan,et al.  Biting Deterrence, Repellency, and Larvicidal Activity of Ruta chalepensis (Sapindales: Rutaceae) Essential Oil and Its Major Individual Constituents Against Mosquitoes , 2013, Journal of medical entomology.

[12]  N. El-Wakeil RETRACTED ARTICLE: Botanical Pesticides and Their Mode of Action , 2013, Gesunde Pflanzen.

[13]  S. Braman,et al.  Pesticide Compatibility with Natural Enemies for Pest Management in Greenhouse Gerbera Daisies , 2013, Journal of economic entomology.

[14]  R. Guedes,et al.  Survival and behavioural response to acaricides of the coconut mite predator Neoseiulus baraki , 2013, Experimental and Applied Acarology.

[15]  R. Guedes,et al.  Acaricide toxicity and synergism of fenpyroximate to the coconut mite predator Neoseiulus baraki , 2013, BioControl.

[16]  D. Navia,et al.  A review of the status of the coconut mite, Aceria guerreronis (Acari: Eriophyidae), a major tropical mite pest , 2013, Experimental and Applied Acarology.

[17]  J. Dutkiewicz,et al.  Repellents and acaricides as personal protection measures in the prevention of tick-borne diseases. , 2012, Annals of agricultural and environmental medicine : AAEM.

[18]  D. C. Oliveira,et al.  Status of Aceria guerreronis Keifer (Acari: Eriophyidae) as a Pest of Coconut in the State of Sao Paulo, Southeastern Brazil , 2012, Neotropical Entomology.

[19]  G. J. Moraes,et al.  Limitations of Neoseiulus baraki and Proctolaelaps bickleyi as control agents of Aceria guerreronis , 2012, Experimental and Applied Acarology.

[20]  R. Hanna,et al.  The coconut mite, Aceria guerreronis, in Benin and Tanzania: occurrence, damage and associated acarine fauna , 2011, Experimental and Applied Acarology.

[21]  J. Melo,et al.  Olfactory response of predatory mites to vegetative and reproductive parts of coconut palm infested by Aceria guerreronis , 2011, Experimental and Applied Acarology.

[22]  M. Emmerson,et al.  Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland , 2010 .

[23]  G. J. Moraes,et al.  Diet-dependent life history, feeding preference and thermal requirements of the predatory mite Neoseiulus baraki (Acari: Phytoseiidae) , 2010, Experimental and Applied Acarology.

[24]  B. Mullens,et al.  Laboratory trials of fatty acids as repellents or antifeedants against houseflies, horn flies and stable flies (Diptera: Muscidae). , 2009, Pest management science.

[25]  R. Rose,et al.  The role of fatty acids and soaps in aphid control on conifers. , 2009 .

[26]  E. Aluyor,et al.  The use of antioxidants in vegetable oils – A review , 2008 .

[27]  R. Pereira,et al.  Toxicity of Fatty Acid Salts to German and American Cockroaches , 2008, Journal of economic entomology.

[28]  M. G. Gondim,et al.  Exploration of the acarine fauna on coconut palm in Brazil with emphasis on Aceria guerreronis (Acari: Eriophyidae) and its natural enemies , 2007, Bulletin of Entomological Research.

[29]  T. B. Grangeiro,et al.  Insecticidal activity of 2-tridecanone against the cowpea weevil Callosobruchus maculatus (Coleoptera: Bruchidae). , 2007, Anais da Academia Brasileira de Ciencias.

[30]  N. Jorge,et al.  Antioxidantes utilizados em óleos, gorduras e alimentos gordurosos , 2006 .

[31]  Young-Joon Kim,et al.  Fenpyroximate resistance in Tetranychus urticae (Acari: Tetranychidae): cross-resistance and biochemical resistance mechanisms. , 2004, Pest management science.

[32]  G. Bengtsson,et al.  Endogenous Free Fatty Acids Repel and Attract Collembola , 2004, Journal of Chemical Ecology.

[33]  G. Antonious,et al.  Insecticidal and Acaricidal Performance of Methyl Ketones in Wild Tomato Leaves , 2003, Bulletin of environmental contamination and toxicology.

[34]  D. Szumlas Behavioral Responses and Mortality in German Cockroaches (Blattodea: Blattellidae) After Exposure to Dishwashing Liquid , 2002, Journal of economic entomology.

[35]  P. R. Reis,et al.  Biologia do ácaro predador Euseius alatus DeLeon (Acari: Phytoseiidae) , 1997 .

[36]  Maurice W. Sabelis,et al.  Toxicity of methyl ketones from tomato trichomes to Tetranychus urticae Koch , 1997, Experimental & Applied Acarology.

[37]  J. Borden,et al.  Fatty acid necromones for cockroaches , 1994, Naturwissenschaften.

[38]  H. Preisler,et al.  Pesticide Bioassays With Arthropods , 1991 .

[39]  H. Anber,et al.  A mutant esterase degrading organophosphates in a resistant strain of the predacious mite Amblyseius potentillae (Garman) , 1989 .

[40]  J. Bergé,et al.  Analysis of methidathion resistance mechanisms in Phytoseiulus persimilis A.H , 1987 .

[41]  R. Roush,et al.  Biochemical Genetics of Resistance to Aryl Carbamate Insecticides in the Predaceous Mite, Metaseiulus occidentalis , 1982 .

[42]  George Ware,et al.  The Pesticide Book , 1979 .

[43]  S. Sitch,et al.  Plant Defense Against Herbivores : Chemical Aspects , 2014 .

[44]  J. Arnason,et al.  Essential oils in insect control: low-risk products in a high-stakes world. , 2012, Annual review of entomology.

[45]  Murray B Isman,et al.  Perspective Botanical insecticides: for richer, for poorer , 2008 .

[46]  M. Isman Botanical insecticides: for richer, for poorer. , 2008, Pest management science.

[47]  Axel Decourtye,et al.  The sublethal effects of pesticides on beneficial arthropods. , 2007, Annual review of entomology.

[48]  Toshiharu Tanaka,et al.  Monooxygenase Activity in Methidathion Resistant and Susceptible Populations of Amblyseius womersleyi (Acari: Phytoseiidae) , 2006, Experimental & Applied Acarology.

[49]  G. J. Moraes,et al.  Phytoseiid mites (Acari: Phytoseiidae) of coconut growing areas in Sri Lanka, with descriptions of three new species. , 2004 .