Asymptotic structural characteristics of fuzzy measure and their applications

Abstract In fuzzy measure theory, as Sugeno's fuzzy measures lose additivity in general, the concept ‘almost’, which is well known in classical measure theory, splits into two different concepts, ‘almost’ and ‘pseudo-almost’. In order to replace the additivity, it is quite necessary to investigate some asymptotic behaviors of a fuzzy measure at sequences of sets which are called ‘waxing’ and ‘waning’, and to introduce some new concepts, such as ‘autocontinuity’, ‘converse-autocontinuity’ and ‘pseudo-autocontinuity’. These concepts describe some asymptotic structural characteristics of a fuzzy measure. In this paper, by means of the asymptotic structural characteristics of fuzzy measure, we also give four forms of generalization for both Egoroff's theorem, Riesz's theorem and Lebesgue's theorem respectively, and prove the almost everywhere (pseudo-almost everywhere) convergence theorem, the convergence in measure (pseudo-in measure) theorem of the sequence of fuzzy integrals. In the last two theorems, the employed conditions are not only sufficient, but also necessary.