A mixed method for bending and free vibration of beams resting on a Pasternak elastic foundation

[1]  Samir K. Das,et al.  Mathematical model for coupled roll and yaw motions of a floating body in regular waves under resonant and non-resonant conditions , 2005 .

[2]  Chang-New Chen,et al.  Buckling equilibrium equations of arbitrarily loaded nonprismatic composite beams and the DQEM buckling analysis using EDQ , 2003 .

[3]  Chang-New Chen A derivation and solution of dynamic equilibrium equations of shear undeformable composite anisotropic beams using the DQEM , 2002 .

[4]  Yusuf Ayvaz,et al.  APPLICATION OF MODIFIED VLASOV MODEL TO FREE VIBRATION ANALYSIS OF BEAMS RESTING ON ELASTIC FOUNDATIONS , 2002 .

[5]  H. Ding,et al.  On the Bending, Vibration and Stability of Laminated Rectangular Plates with Transversely Isotropic Layers , 2001 .

[6]  Chang-New Chen,et al.  Vibration of prismatic beam on an elastic foundation by the differential quadrature element method , 2000 .

[7]  F. Au,et al.  Vibration and stability of non-uniform beams with abrupt changes of cross-section by using C1 modified beam vibration functions , 1999 .

[8]  Chang-New Chen,et al.  Solution of beam on elastic foundation by DQEM , 1998 .

[9]  M. A. De Rosa,et al.  THE INFLUENCE OF CONCENTRATED MASSES AND PASTERNAK SOIL ON THE FREE VIBRATIONS OF EULER BEAMS—EXACT SOLUTION , 1998 .

[10]  Z. A. Siddiqi,et al.  Analysis of eccentrically stiffened plates with mixed boundary conditions using differential quadrature method , 1998 .

[11]  Cha'o-Kuang Chen,et al.  Analysis of general elastically end restrained non-uniform beams using differential transform , 1998 .

[12]  Xiaoqiao He,et al.  Exact Solutions for Timoshenko Beams on Elastic Foundations Using Green's Functions∗ , 1998 .

[13]  D. Haojiang,et al.  Nonaxisymmetric free vibrations of a spherically isotropic spherical shell embedded in an elastic medium , 1996 .

[14]  C. Bert,et al.  Differential Quadrature Method in Computational Mechanics: A Review , 1996 .

[15]  N. R. Naidu,et al.  Vibrations of initially stressed uniform beams on a two-parameter elastic foundation , 1995 .

[16]  M. A. De Rosa,et al.  Free vibrations of Timoshenko beams on two-parameter elastic foundation , 1995 .

[17]  S. Farghaly,et al.  An exact frequency equation for an axially loaded beam-mass-spring system resting on a Winkler elastic foundation , 1995 .

[18]  Charles W. Bert,et al.  Differential quadrature analysis of deflection, buckling, and free vibration of beams and rectangular plates , 1993 .

[19]  Angelo Masi,et al.  Free vibrations of foundation beams on two-parameter elastic soil , 1993 .

[20]  Ding Zhou,et al.  A general solution to vibrations of beams on variable winkler elastic foundation , 1993 .

[21]  P.A.A. Laura,et al.  Analysis of Vibrating Timoshenko Beams Using the Method of Differential Quadrature , 1993 .

[22]  C. Shu,et al.  APPLICATION OF GENERALIZED DIFFERENTIAL QUADRATURE TO SOLVE TWO-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS , 1992 .

[23]  M. Pandey,et al.  Differential quadrature method in the buckling analysis of beams and composite plates , 1991 .

[24]  R. C. Kar,et al.  Parametric instability of Timoshenko beam with thermal gradient resting on a variable Pasternak foundation , 1990 .

[25]  Sen-Yung Lee,et al.  Free vibrations of non-uniform beams resting on non-uniform elastic foundation with general elastic end restraints , 1990 .

[26]  Moshe Eisenberger,et al.  Vibrations and buckling of a beam on a variable winkler elastic foundation , 1987 .

[27]  Moshe Eisenberger,et al.  Beams on Variable Winkler Elastic Foundation , 1986 .

[28]  J. M. Davies An Exact Finite Element for Beam on Elastic Foundation Problems , 1986 .

[29]  Moshe Eisenberger,et al.  Stability of beams on elastic foundation , 1986 .

[30]  R. Knops,et al.  Three-Dimensional Problems of the Theory of Elasticity , 1967, The Mathematical Gazette.

[31]  P. L. Pasternak On a new method of analysis of an elastic foundation by means of two foundation constants , 1954 .

[32]  M. Hetényi A General Solution for the Bending of Beams on an Elastic Foundation of Arbitrary Continuity , 1950 .