Circle-valued Morse theory, Reidemeister torsion, and Seiberg-Witten invariants of 3-manifolds

Abstract Let X be a closed oriented Riemannian manifold with χ(X)=0 and b1(X)>0, and let φ : X→S 1 be a circle-valued Morse function. Under some mild assumptions on φ, we prove a formula relating 1. the number of closed orbits of the gradient flow of φ in different homology classes; 2. the torsion of the Novikov complex, which counts gradient flow lines between critical points of φ; and 3. a kind of Reidemeister torsion of X determined by the homotopy class of φ. When dim(X)=3, we state a conjecture related to Taubes’s “SW=Gromov” theorem, and we use it to deduce (for closed manifolds, modulo signs) the Meng–Taubes relation between the Seiberg-Witten invariants and the “Milnor torsion” of X.

[1]  A. Weil Numbers of solutions of equations in finite fields , 1949 .

[2]  Bernard Helffer,et al.  Puits multiples en mecanique semi-classique iv etude du complexe de witten , 1985 .

[3]  P. Kronheimer,et al.  The Genus of Embedded Surfaces in the Projective Plane , 1994 .

[4]  C. Taubes,et al.  $\underline{SW}$ = Milnor Torsion , 1996 .

[5]  Topological Quantum Field Theory and Seiberg-Witten Monopoles , 1995, hep-th/9504005.

[6]  J. Morgan The Seiberg-Witten equations and applications to the topology of smooth four-manifolds , 1995 .

[7]  J. Milnor Lectures on the h-cobordism theorem , 1965 .

[8]  J. Bismut,et al.  An extension of a theorem by Cheeger and Müller , 1992 .

[9]  C. Taubes The Seiberg-Witten and Gromov invariants , 1995 .

[10]  A. V. Pazhitnov Surgery on the Novikov complex , 1996 .

[11]  E. Witten Supersymmetry and Morse theory , 1982 .

[12]  J. Morgan,et al.  A product formula for the seiberg-witten invariants and the generalized thom conjecture , 1996 .

[13]  K. Ôno,et al.  Symplectic fixed points, the Calabi invariant and Novikov homology , 1995 .

[14]  W. H. Cockcroft,et al.  J. Milnor, Lectures on the h-Cobordism Theorem , Notes by L. Siebenmann and J. Sondow (Princeton Mathematical Notes, Oxford University Press), 18s. , 1967, Proceedings of the Edinburgh Mathematical Society.

[15]  V. Turaev Torsion invariants of $Spin^c$-structures on 3-manifolds , 1997 .

[16]  S. Smale Morse inequalities for a dynamical system , 1960 .

[17]  V. Turaev A combinatorial formulation for the Seiberg-Witten invariants of 3-manifolds , 1998 .

[18]  A. V. Pazhitnov On the Novikov complex for rational Morse forms , 1995 .

[19]  A. Pajitnov On the Novikov complex for rational Morse forms , 1995 .

[20]  D. Salamon,et al.  Floer homology and Novikov rings , 1995 .

[21]  David Fried Lefschetz formulas for flows , 1987 .

[22]  V. Turaev Reidemeister torsion in knot theory , 1986 .

[23]  E. Witten Monopoles and four-manifolds , 1994, hep-th/9411102.

[24]  Knots, links, and 4-manifolds , 1996, dg-ga/9612014.

[25]  F. Latour Existence de l-formes fermées non singulières dans une classe de cohomologie de de Rham , 1994 .

[26]  A. Carey,et al.  Seiberg--Witten Monopoles in Three Dimensions , 1997 .

[27]  David Fried Homological identities for closed orbits , 1983 .

[28]  Gromov invariants and symplectic maps , 1997, dg-ga/9703013.

[29]  K. Fukaya Floer homology of connected sum of homology 3-spheres , 1996 .

[30]  A. Floer WITTEN'S COMPLEX AND INFINITE DIMENSIONAL MORSE THEORY , 1989 .