Partially varying coefficient single index proportional hazards regression models

In this paper, the partially varying coefficient single index proportional hazards regression models are discussed. All unknown functions are fitted by polynomial B splines. The index parameters and B-spline coefficients are estimated by the partial likelihood method and a two-step Newton-Raphson algorithm. Consistency and asymptotic normality of the estimators of all the parameters are derived. Through a simulation study and the VA data example, we illustrate that the proposed estimation procedure is accurate, rapid and stable.

[1]  Toshio Odanaka,et al.  ADAPTIVE CONTROL PROCESSES , 1990 .

[2]  Xuewen Lu,et al.  A class of partially linear single‐index survival models , 2006 .

[3]  J. Kalbfleisch,et al.  The Statistical Analysis of Failure Time Data , 1980 .

[4]  D. Ruppert Selecting the Number of Knots for Penalized Splines , 2002 .

[5]  Tue Gørgens,et al.  AVERAGE DERIVATIVES FOR HAZARD FUNCTIONS , 2004, Econometric Theory.

[6]  R. Tibshirani,et al.  Local Likelihood Estimation , 1987 .

[7]  Chong Gu PENALIZED LIKELIHOOD HAZARD ESTIMATION: A GENERAL PROCEDURE , 1996 .

[8]  H C van Houwelingen,et al.  Time-dependent effects of fixed covariates in Cox regression. , 1995, Biometrics.

[9]  Jianhua Z. Huang,et al.  Polynomial Spline Estimation and Inference of Proportional Hazards Regression Models with Flexible Relative Risk Form , 2006, Biometrics.

[10]  D. Harrington,et al.  Regression Splines in the Cox Model with Application to Covariate Effects in Liver Disease , 1990 .

[11]  Zongwu Cai,et al.  Local Linear Estimation for Time-Dependent Coefficients in Cox's Regression Models , 2003 .

[12]  Leszek Marzec,et al.  On fitting Cox's regression model with time-dependent coefficients , 1997 .

[13]  A. Karr,et al.  Nonparametric Survival Analysis with Time-Dependent Covariate Effects: A Penalized Partial Likelihood Approach , 1990 .

[14]  Robert Gray,et al.  Flexible Methods for Analyzing Survival Data Using Splines, with Applications to Breast Cancer Prognosis , 1992 .

[15]  P. Sasieni,et al.  Martingale difference residuals as a diagnostic tool for the Cox model , 2003 .

[16]  D. Cox Regression Models and Life-Tables , 1972 .

[17]  Niels Keiding,et al.  Statistical Models Based on Counting Processes , 1993 .

[18]  David R. Cox,et al.  Regression models and life tables (with discussion , 1972 .

[19]  D. Cox,et al.  Analysis of Survival Data. , 1985 .

[20]  R. Gill,et al.  Cox's regression model for counting processes: a large sample study : (preprint) , 1982 .

[21]  Peter J. Bickel,et al.  On a semiparametric survival model with flexible covariate effect , 1998 .

[22]  Jianhua Z. Huang,et al.  Functional ANOVA modeling for proportional hazards regression , 2000 .

[23]  R. Gentleman,et al.  Local full likelihood estimation for the proportional hazards model. , 1991, Biometrics.

[24]  P. Sen,et al.  Time-dependent coefficients in a Cox-type regression model , 1991 .

[25]  Jian Huang Efficient estimation of the partly linear additive Cox model , 1999 .

[26]  Irène Gijbels,et al.  Local likelihood and local partial likelihood in hazard regression , 1997 .

[27]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[28]  L. J. Wei,et al.  On the Cox Model With Time-Varying Regression Coefficients , 2005 .

[29]  Jie Sun,et al.  Computational Statistics and Data Analysis Polynomial Spline Estimation of Partially Linear Single-index Proportional Hazards Regression Models , 2022 .

[30]  R. Bellman,et al.  V. Adaptive Control Processes , 1964 .

[31]  Susan A. Murphy,et al.  Testing for a Time Dependent Coefficient in Cox's Regression Model , 1993 .

[32]  Steven G. Self,et al.  Asymptotic Distribution Theory for Cox-Type Regression Models with General Relative Risk Form , 1983 .

[33]  Finbarr O'Sullivan,et al.  Nonparametric Estimation in the Cox Model , 1993 .