Problem : Discrete Painlevé equations and their Lax forms

In the talk of the conference, a Lax formalism of q ‐Painlevé equation associated to A_{2}^{(1)_{-}} surface was presented. We can see this result in the paper, [21]. In this article, we see a rough picture around this problem.

[1]  Sakai Hidetaka Lax form of the q-Painlevé equation associated with the A(1)2 surface , 2006 .

[2]  H. Sakai A q-Analog of the Garnier System , 2005 .

[3]  M. Murata New Expressions for Discrete Painlevé Equations , 2003, nlin/0304001.

[4]  T. Takenawa Weyl Group Symmetry of Type D5(1) in the q-Painlevé V Equation , 2003 .

[5]  K. Kajiwara,et al.  Discrete Dynamical Systems with W(A(1)m−1 × A(1)n−1) Symmetry , 2002 .

[6]  Y. Ohta,et al.  An affine Weyl group approach to the eight-parameter discrete Painlevé equation , 2001 .

[7]  K. M. Tamizhmani,et al.  Special function solutions of the discrete painlevé equations , 2001 .

[8]  H. Sakai,et al.  Rational Surfaces Associated with Affine Root Systems¶and Geometry of the Painlevé Equations , 2001 .

[9]  K. Kajiwara,et al.  A study on the fourth q-Painlevé equation , 2000, nlin/0012063.

[10]  M. Jimbo,et al.  A q-analog of the sixth Painlevé equation , 1995, chao-dyn/9507010.

[11]  Ramani,et al.  Discrete versions of the Painlevé equations. , 1991, Physical review letters.

[12]  Ramani,et al.  Do integrable mappings have the Painlevé property? , 1991, Physical review letters.

[13]  V. Papageorgiou,et al.  Similarity reductions of integrable lattices and discrete analogues of the Painlevé II equation , 1991 .

[14]  D. Shevitz,et al.  Exactly solvable unitary matrix models: Multicritical potentials and correlations , 1990 .

[15]  É. Brézin,et al.  Exactly Solvable Field Theories of Closed Strings , 1990 .

[16]  Michio Jimbo,et al.  Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III , 1981 .

[17]  M. Jimbo,et al.  Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. II , 1981 .

[18]  G. Birkhoff The Generalized Riemann Problem for Linear Differential Equations and the Allied Problems for Linear Difference and q-Difference Equations , 1913 .

[19]  L. Schlesinger Über eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten. , 1912 .

[20]  René Garnier,et al.  Sur des équations différentielles du troisième ordre dont l'intégrale générale est uniforme et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale a ses points critiques fixes , 1912 .

[21]  R. Fuchs Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen , 1911 .