Problem : Discrete Painlevé equations and their Lax forms
暂无分享,去创建一个
[1] Sakai Hidetaka. Lax form of the q-Painlevé equation associated with the A(1)2 surface , 2006 .
[2] H. Sakai. A q-Analog of the Garnier System , 2005 .
[3] M. Murata. New Expressions for Discrete Painlevé Equations , 2003, nlin/0304001.
[4] T. Takenawa. Weyl Group Symmetry of Type D5(1) in the q-Painlevé V Equation , 2003 .
[5] K. Kajiwara,et al. Discrete Dynamical Systems with W(A(1)m−1 × A(1)n−1) Symmetry , 2002 .
[6] Y. Ohta,et al. An affine Weyl group approach to the eight-parameter discrete Painlevé equation , 2001 .
[7] K. M. Tamizhmani,et al. Special function solutions of the discrete painlevé equations , 2001 .
[8] H. Sakai,et al. Rational Surfaces Associated with Affine Root Systems¶and Geometry of the Painlevé Equations , 2001 .
[9] K. Kajiwara,et al. A study on the fourth q-Painlevé equation , 2000, nlin/0012063.
[10] M. Jimbo,et al. A q-analog of the sixth Painlevé equation , 1995, chao-dyn/9507010.
[11] Ramani,et al. Discrete versions of the Painlevé equations. , 1991, Physical review letters.
[12] Ramani,et al. Do integrable mappings have the Painlevé property? , 1991, Physical review letters.
[13] V. Papageorgiou,et al. Similarity reductions of integrable lattices and discrete analogues of the Painlevé II equation , 1991 .
[14] D. Shevitz,et al. Exactly solvable unitary matrix models: Multicritical potentials and correlations , 1990 .
[15] É. Brézin,et al. Exactly Solvable Field Theories of Closed Strings , 1990 .
[16] Michio Jimbo,et al. Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. III , 1981 .
[17] M. Jimbo,et al. Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. II , 1981 .
[18] G. Birkhoff. The Generalized Riemann Problem for Linear Differential Equations and the Allied Problems for Linear Difference and q-Difference Equations , 1913 .
[19] L. Schlesinger. Über eine Klasse von Differentialsystemen beliebiger Ordnung mit festen kritischen Punkten. , 1912 .
[20] René Garnier,et al. Sur des équations différentielles du troisième ordre dont l'intégrale générale est uniforme et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale a ses points critiques fixes , 1912 .
[21] R. Fuchs. Über lineare homogene Differentialgleichungen zweiter Ordnung mit drei im Endlichen gelegenen wesentlich singulären Stellen , 1911 .