Structure of a subnanometer-sized semiconductor Cd14Se13 cluster

[1]  Kui Yu,et al.  A Two‐Pathway Model for the Evolution of Colloidal Compound Semiconductor Quantum Dots and Magic‐Size Clusters , 2022, Advanced materials.

[2]  N. Chilton,et al.  Organometallic lanthanide bismuth cluster single-molecule magnets , 2021, Chem.

[3]  T. Hyeon,et al.  Nanoconfinement‐Controlled Synthesis of Highly Active, Multinary Nanoplatelet Catalysts from Lamellar Magic‐Sized Nanocluster Templates , 2021, Advanced Functional Materials.

[4]  D. Norris,et al.  Core/Shell Magic-Sized CdSe Nanocrystals. , 2021, Nano letters.

[5]  Y. Arakawa,et al.  Semiconductor quantum dots: Technological progress and future challenges , 2021, Science.

[6]  N. Zheng,et al.  Tertiary Chiral Nanostructures from C-H∙∙∙F Directed Assembly of Chiroptical Superatoms. , 2021, Angewandte Chemie.

[7]  H. Häkkinen,et al.  Reversible Isomerization of Metal Nanoclusters Induced by Intermolecular Interaction , 2021, SSRN Electronic Journal.

[8]  M. Steigerwald,et al.  Superatomic solid solutions , 2021, Nature Chemistry.

[9]  D. Norris,et al.  Understanding Discrete Growth in Semiconductor Nanocrystals: Nanoplatelets and Magic-Sized Clusters. , 2021, Accounts of chemical research.

[10]  Kui Yu,et al.  Transformations Among Colloidal Semiconductor Magic-Size Clusters. , 2021, Accounts of chemical research.

[11]  T. Hyeon,et al.  Highly luminescent and catalytically active suprastructures of magic-sized semiconductor nanoclusters , 2021, Nature Materials.

[12]  R. D. Robinson,et al.  Interplay between Chemical Transformations and Atomic Structure in Nanocrystals and Nanoclusters. , 2021, Accounts of chemical research.

[13]  A. Riedinger,et al.  Unraveling the Growth Mechanism of Magic-Sized Semiconductor Nanocrystals. , 2020, Journal of the American Chemical Society.

[14]  E. Hemmer,et al.  Magic-sized CdSe nanoclusters: a review on synthesis, properties and white light potential , 2021, Materials Advances.

[15]  C. Murray,et al.  Colloidal Quantum Dots as Platforms for Quantum Information Science. , 2020, Chemical reviews.

[16]  T. Hyeon,et al.  Magic-Sized Stoichiometric II-VI Nanoclusters. , 2020, Small.

[17]  C. Murray,et al.  General Synthetic Route to High Quality Colloidal III-V Semiconductor Quantum Dots Based on Pnictogen Chlorides. , 2019, Journal of the American Chemical Society.

[18]  Xun Wang,et al.  Incorporation of clusters within inorganic materials through their addition during nucleation steps , 2019, Nature Chemistry.

[19]  U. Banin,et al.  Chemically reversible isomerization of inorganic clusters , 2019, Science.

[20]  E. Sargent,et al.  N-heterocyclic carbene-functionalized magic-number gold nanoclusters , 2018, Nature Chemistry.

[21]  B. Cossairt,et al.  Conversion Reactions of Atomically Precise Semiconductor Clusters. , 2018, Accounts of chemical research.

[22]  Xu‐Bing Li,et al.  Semiconducting quantum dots for artificial photosynthesis , 2018, Nature Reviews Chemistry.

[23]  Shing‐Jong Huang,et al.  Unraveling the Structure of Magic-Size (CdSe)13 Cluster Pairs , 2018, Chemistry of Materials.

[24]  B. Cossairt,et al.  Templated Growth of InP Nanocrystals with a Polytwistane Structure. , 2018, Angewandte Chemie.

[25]  L. Kourkoutis,et al.  Mesophase Formation Stabilizes High-Purity Magic-Sized Clusters. , 2018, Journal of the American Chemical Society.

[26]  F. Rosei,et al.  Colloidal Quantum Dots for Solar Technologies , 2017 .

[27]  Taeghwan Hyeon,et al.  Chemical Synthesis, Doping, and Transformation of Magic-Sized Semiconductor Alloy Nanoclusters. , 2017, Journal of the American Chemical Society.

[28]  Xi-Yan Dong,et al.  Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework. , 2017, Nature chemistry.

[29]  Cherie R. Kagan,et al.  Building devices from colloidal quantum dots , 2016, Science.

[30]  Taeghwan Hyeon,et al.  The surface science of nanocrystals. , 2016, Nature materials.

[31]  W. Kaminsky,et al.  Single-Crystal and Electronic Structure of a 1.3 nm Indium Phosphide Nanocluster. , 2016, Journal of the American Chemical Society.

[32]  Jung Ho Yu,et al.  Route to the Smallest Doped Semiconductor: Mn(2+)-Doped (CdSe)13 Clusters. , 2015, Journal of the American Chemical Society.

[33]  J. Owen The coordination chemistry of nanocrystal surfaces , 2015, Science.

[34]  Xiaohao Yang,et al.  Atomic structures and gram scale synthesis of three tetrahedral quantum dots. , 2014, Journal of the American Chemical Society.

[35]  H. Rohrs,et al.  The Magic-Size Nanocluster (CdSe)34 as a Low-Temperature Nucleant for Cadmium Selenide Nanocrystals; Room-Temperature Growth of Crystalline Quantum Platelets , 2014, Chemistry of materials : a publication of the American Chemical Society.

[36]  R. Sardar,et al.  Isolation of Bright Blue Light-Emitting CdSe Nanocrystals with 6.5 kDa Core in Gram Scale: High Photoluminescence Efficiency Controlled by Surface Ligand Chemistry , 2014 .

[37]  Christopher B. Murray,et al.  Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts , 2013, Science.

[38]  M. Gross,et al.  Isolation of the magic-size CdSe nanoclusters [(CdSe)13(n-octylamine)13] and [(CdSe)13(oleylamine)13]. , 2012, Angewandte Chemie.

[39]  Kui Yu CdSe Magic‐Sized Nuclei, Magic‐Sized Nanoclusters and Regular Nanocrystals: Monomer Effects on Nucleation and Growth , 2012, Advanced materials.

[40]  P. C. Gibbons,et al.  Lamellar assembly of cadmium selenide nanoclusters into quantum belts. , 2011, Journal of the American Chemical Society.

[41]  B. Cossairt,et al.  CdSe Clusters: At the Interface of Small Molecules and Quantum Dots , 2011 .

[42]  E. Rabani,et al.  Heavily Doped Semiconductor Nanocrystal Quantum Dots , 2011, Science.

[43]  Tomasz Dietl,et al.  A ten-year perspective on dilute magnetic semiconductors and oxides. , 2010, Nature materials.

[44]  P. N. Day,et al.  Understanding Structural and Optical Properties of Nanoscale CdSe Magic-Size Quantum Dots: Insight from Computational Prediction , 2010 .

[45]  J. Furdyna,et al.  Giant Zeeman splitting in nucleation-controlled doped CdSe:Mn2+ quantum nanoribbons. , 2010, Nature materials.

[46]  M. Kovalenko,et al.  Prospects of colloidal nanocrystals for electronic and optoelectronic applications. , 2010, Chemical reviews.

[47]  S. Khanna,et al.  Designer magnetic superatoms. , 2009, Nature chemistry.

[48]  Yang Li,et al.  Sequential Growth of Magic‐Size CdSe Nanocrystals , 2007 .

[49]  James R McBride,et al.  White-light emission from magic-sized cadmium selenide nanocrystals. , 2005, Journal of the American Chemical Society.

[50]  Thomas A. Kennedy,et al.  Doping semiconductor nanocrystals , 2005, Nature.

[51]  Y. Kawazoe,et al.  Ultra-stable nanoparticles of CdSe revealed from mass spectrometry , 2004, Nature materials.

[52]  U. Banin,et al.  Size-dependent optical spectroscopy of a homologous series of CdSe cluster molecules. , 2001, Journal of the American Chemical Society.

[53]  U. Banin,et al.  Molecular Limit of a Bulk Semiconductor: Size Dependence of the “Band Gap” in CdSe Cluster Molecules , 2000 .

[54]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[55]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[56]  Ying Wang,et al.  Crystal Structure and Optical Properties of Cd32S14(SC6H5)36. DMF4, a Cluster with a 15 Angstrom CdS Core , 1993, Science.

[57]  Ralph G. Pearson,et al.  HARD AND SOFT ACIDS AND BASES , 1963 .