Study of conditions for the emergence of cellular communication using self-adaptive multi-agent systems. (Etude des conditionsd'émergence d'une communication cellulaire par système multi-agent auto-adaptatif)

Les cellules sont des entites complexes qui interagissent pour former des organismes superieurs avec des comportements emergents. Pour coordonner leurs actions, les cellules utilisent des molecules messageres qui influencent le comportement de leur environnement cellulaire. Cette communication peut prendre la forme d'ordres simples ou complexes et dependants de diverses conditions internes et externes. L'emergence de ces protocoles de communication est au centre de cette these ainsi que sa nature, simple ou structuree comme un langage. Un systeme multi-agents adaptatif (AMAS) est developpe pour etudier les conditions necessaires a l'emergence de la cooperation et de la communication dans le contexte des tissus multicellulaires. A partir d'un modele simpliste de cellule eucaryote, le comportement de l'agent cellulaire est developpe et l'evolution du systeme global est exploree pour identifier les conditions minimales et necessaires a l'apparition de la communication. La difficulte par rapport a d'autres systemes multi-agents reside dans les interactions limitees entre les agents, puisque tout echange d'informations doit passer par l'environnement des cellules, en tant que molecules. A cet egard, la coordination cellulaire depend de nombreux facteurs tels que la diffusion ou la stabilite chimique des molecules. L'un des defis de cette etude est de trouver une methodologie de simulation qui n'introduit pas de biais vers le comportement attendu du systeme, a savoir la communication. Cela impose d'eviter toute methodologie utilisant des fonctions globales de fitness comme les reseaux neuronaux ou les algorithmes genetiques. Un autre defi est l'exploration de l'espace de parametres du systeme qui croit de facon exponentielle avec sa taille. Il doit etre efficace et sans parti pris. Le paradigme de cooperation utilise dans le cadre d'AMAS est bien adapte a cette tâche et permet des temps de simulation raisonnables. Ce manuscrit presente l'etat de l'art des simulations multicellulaires et leur utilisation potentielle dans ce contexte. Ensuite, le systeme AMAS est developpe etape par etape pour explorer les conditions de l'emergence de la communication. A chaque etape, l'efficacite de la methodologie est discutee et les resultats experimentaux sont presentes pour verifier que l'approche n'introduit pas de biais.

[1]  D. Claessen,et al.  Understanding Microbial Divisions of Labor , 2016, Front. Microbiol..

[2]  C. Dunwiddie,et al.  Sulfonamidopyrrolidinone factor Xa inhibitors: potency and selectivity enhancements via P-1 and P-4 optimization. , 1999, Journal of medicinal chemistry.

[3]  Stefan Hoehme,et al.  A cell-based simulation software for multi-cellular systems , 2010, Bioinform..

[4]  R. Dobrescu,et al.  Emergence, self–organization and morphogenesis in biological structures , 2011, Journal of medicine and life.

[5]  Robert Leadley,et al.  Discovery of an orally efficacious inhibitor of coagulation factor Xa which incorporates a neutral P1 ligand. , 2003, Journal of medicinal chemistry.

[6]  M. Mathieu,et al.  Design, synthesis, and biological activity of potent and selective inhibitors of mast cell tryptase. , 2005, Bioorganic & medicinal chemistry letters.

[7]  Gerd HG Moe-Behrens,et al.  The biological microprocessor, or how to build a computer with biological parts , 2013, Computational and structural biotechnology journal.

[8]  D L Cheney,et al.  Design and structure-activity relationships of potent and selective inhibitors of blood coagulation factor Xa. , 1999, Journal of medicinal chemistry.

[9]  A DYNAMIC EQUILIBRIUM MODEL OF DURABLE GOODS MONOPOLY , 1998 .

[10]  C. Venot,et al.  Design of Potent IGF1‐R Inhibitors Related to Bis‐azaindoles , 2010, Chemical biology & drug design.

[11]  B. Bassler,et al.  Quorum sensing in bacteria. , 2001, Annual review of microbiology.

[12]  A. Griffin,et al.  Cooperation and conflict in quorum-sensing bacterial populations , 2007, Nature.

[13]  A. Laio,et al.  Escaping free-energy minima , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  John H. Koschwanez,et al.  Sucrose Utilization in Budding Yeast as a Model for the Origin of Undifferentiated Multicellularity , 2011, PLoS Biology.

[15]  I. Morize,et al.  Structure-based library design and the discovery of a potent and selective mast cell β-tryptase inhibitor as an oral therapeutic agent. , 2012, Bioorganic & medicinal chemistry letters.

[16]  Paul Macklin,et al.  PhysiCell: an Open Source Physics-Based Cell Simulator for 3-D Multicellular Systems , 2017, bioRxiv.

[17]  V. Mikol,et al.  Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: high level of similarity of the active site with other viral integrases. , 1998, Journal of molecular biology.

[18]  M. Won,et al.  Multiple paracrine factors secreted by mesenchymal stem cells contribute to angiogenesis. , 2014, Vascular pharmacology.

[19]  B. Kerr,et al.  Stabilizing multicellularity through ratcheting , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[20]  J. Westwater,et al.  The Mathematics of Diffusion. , 1957 .

[21]  Gauthier Picard,et al.  Méthodologie de développement de systèmes multi-agents adaptatifs et conception de logiciels à fonctionnalité émergente. (Methodology for developing adaptive multi-agent systems and designing software with emergent functionality) , 2004 .

[22]  D. Kirk,et al.  A twelve-step program for evolving multicellularity and a division of labor. , 2005, BioEssays : news and reviews in molecular, cellular and developmental biology.

[23]  S. Kauffman Homeostasis and Differentiation in Random Genetic Control Networks , 1969, Nature.

[24]  Zhiwei Ji,et al.  Mathematical and Computational Modeling in Complex Biological Systems , 2017, BioMed research international.

[25]  W. Doolittle,et al.  How a neutral evolutionary ratchet can build cellular complexity , 2011, IUBMB life.

[26]  Sébastien Maignan,et al.  Molecular structures of human factor Xa complexed with ketopiperazine inhibitors: preference for a neutral group in the S1 pocket. , 2003, Journal of medicinal chemistry.

[27]  Andreas Deutsch,et al.  Cellular automaton modeling of biological pattern formation , 2009 .

[28]  Elfriede Friedmann,et al.  PDE/ODE modeling and simulation to determine the role of diffusion in long-term and -range cellular signaling , 2015, BMC biophysics.

[29]  Jacques Ferber,et al.  Environments for Multiagent Systems State-of-the-Art and Research Challenges , 2004, E4MAS.

[30]  K. Niklas The evolutionary-developmental origins of multicellularity. , 2014, American journal of botany.

[31]  Frisch,et al.  Lattice gas automata for the Navier-Stokes equations. a new approach to hydrodynamics and turbulence , 1989 .

[32]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[33]  Dennis Claessen,et al.  Bacterial solutions to multicellularity: a tale of biofilms, filaments and fruiting bodies , 2014, Nature Reviews Microbiology.

[34]  S. Rebello,et al.  Structure based design of 4-(3-aminomethylphenyl)piperidinyl-1-amides: novel, potent, selective, and orally bioavailable inhibitors of βII tryptase , 2005 .

[35]  Pierre N. Robillard,et al.  Modeling and Simulation of Molecular Biology Systems Using Petri Nets: Modeling Goals of Various Approaches , 2004, J. Bioinform. Comput. Biol..

[36]  Madhusudan Natarajan,et al.  A global analysis of cross-talk in a mammalian cellular signalling network , 2006, Nature Cell Biology.

[37]  Lei Zhang,et al.  Differences between germline and somatic mutation rates in humans and mice , 2017, Nature Communications.

[38]  Bruce Edmonds,et al.  Making Self-Organising Adaptive Multiagent Systems Work , 2004 .

[39]  Arieh Warshel,et al.  Why nature really chose phosphate , 2013, Quarterly Reviews of Biophysics.

[40]  M. Simon,et al.  Deciphering Signaling Outcomes from a System of Complex Networks , 2009, Science Signaling.

[41]  M. Dreyer,et al.  Rational design of potent GSK3beta inhibitors with selectivity for Cdk1 and Cdk2. , 2010, Bioorganic & medicinal chemistry letters.

[42]  M. Bernardo,et al.  Entrainment and Control of Bacterial Populations: An in Silico Study over a Spatially Extended Agent Based Model. , 2016, ACS synthetic biology.

[43]  G. Cooper The Cell: A Molecular Approach , 1996 .

[44]  D. Floreano,et al.  Relatedness influences signal reliability in evolving robots , 2011, Proceedings of the Royal Society B: Biological Sciences.

[45]  Marc Garbey,et al.  Rule-Based Simulation of Multi-Cellular Biological Systems—A Review of Modeling Techniques , 2009, Cellular and molecular bioengineering.

[46]  Nicholas A. Lyons,et al.  On the evolution of bacterial multicellularity. , 2015, Current opinion in microbiology.

[47]  Boris M. Hartmann,et al.  Combinatorial Cytokine Code Generates Anti-Viral State in Dendritic Cells , 2014, Front. Immunol..

[48]  Arthur Peacocke,et al.  The Re-Emergence of Emergence The Emergentist Hypothesis from Science to Religion , 2007 .

[49]  Samuel H. Friedman,et al.  BioFVM: an efficient, parallelized diffusive transport solver for 3-D biological simulations , 2015, Bioinform..

[50]  Andrew J Gentles,et al.  Reprogramming of primary human Philadelphia chromosome-positive B cell acute lymphoblastic leukemia cells into nonleukemic macrophages , 2015, Proceedings of the National Academy of Sciences.

[51]  Tom De Wolf,et al.  Emergence Versus Self-Organisation: Different Concepts but Promising When Combined , 2004, Engineering Self-Organising Systems.

[52]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[53]  Raghunandan M Kainkaryam,et al.  Pooling in high-throughput drug screening. , 2009, Current opinion in drug discovery & development.

[54]  J Walpole,et al.  Agent-based model of angiogenesis simulates capillary sprout initiation in multicellular networks. , 2015, Integrative biology : quantitative biosciences from nano to macro.

[55]  Glazier,et al.  Simulation of biological cell sorting using a two-dimensional extended Potts model. , 1992, Physical review letters.

[56]  Vincent Rodin,et al.  NetBioDyn, a smart Agent-Based software to intuitively model and simulate complex biological systems , 2016 .

[57]  Joachim Hermisson,et al.  Evolution of functional specialization and division of labor , 2012, Proceedings of the National Academy of Sciences.

[58]  S Forrest,et al.  Genetic algorithms , 1996, CSUR.

[59]  Roy Wollman,et al.  Paracrine communication maximizes cellular response fidelity in wound signaling , 2015, eLife.

[60]  J. Cooper,et al.  Crystallization of 5‐aminolaevulinic acid dehydratase from Escherichia coli and Saccharomyces cerevisiae and preliminary X‐ray characterization of the crystals , 1997, Protein science : a publication of the Protein Society.

[61]  D. Sornette,et al.  Exuberant Innovation: The Human Genome Project , 2010, 1003.2882.

[62]  A. Ducruix,et al.  Crystal structure of the mammalian Grb2 adaptor. , 1995, Science.

[63]  S. Ryter,et al.  CO as a cellular signaling molecule. , 2006, Annual review of pharmacology and toxicology.

[64]  King C. Li,et al.  A system mathematical model of a cell-cell communication network in amyotrophic lateral sclerosis. , 2013, Molecular bioSystems.

[65]  Jonathan R. Karr,et al.  A Whole-Cell Computational Model Predicts Phenotype from Genotype , 2012, Cell.

[66]  Rajat K. De,et al.  An integrated pathway system modeling of Saccharomyces cerevisiae HOG pathway: a Petri net based approach , 2012, Molecular Biology Reports.

[67]  Hussein A. Abbass,et al.  Emergence of communication in competitive multi-agent systems: a pareto multi-objective approach , 2005, GECCO '05.

[68]  V. Mikol,et al.  The use of 3D structural data in the design of specific factor Xa inhibitors. , 2001, Current topics in medicinal chemistry.

[69]  Walter de Back,et al.  Morpheus: a user-friendly modeling environment for multiscale and multicellular systems biology , 2014, Bioinform..

[70]  Jacques Ferber,et al.  Multi-agent systems - an introduction to distributed artificial intelligence , 1999 .

[71]  Dagmar Iber,et al.  LBIBCell: a cell-based simulation environment for morphogenetic problems , 2015, Bioinform..

[72]  Gauthier Picard,et al.  The ADELFE Methodology , 2004 .

[73]  H. Kimura Signaling molecules: hydrogen sulfide and polysulfide. , 2015, Antioxidants & redox signaling.

[74]  J C Schaff,et al.  Virtual Cell modelling and simulation software environment. , 2008, IET systems biology.

[75]  Amos Bairoch,et al.  The neXtProt knowledgebase on human proteins: 2017 update , 2016, Nucleic Acids Res..

[76]  S. Tuljapurkar,et al.  Dynamic equilibrium under periodic perturbations in simple ecosystem models. , 1977, Journal of theoretical biology.

[77]  D. A. Garzón-Alvarado,et al.  Modeling cell adhesion and proliferation: a cellular-automata based approach , 2015, Advanced Modeling and Simulation in Engineering Sciences.

[78]  A. Bennett The Origin of Species by means of Natural Selection; or the Preservation of Favoured Races in the Struggle for Life , 1872, Nature.

[79]  D. Bray,et al.  Simulated Diffusion of Phosphorylated CheY through the Cytoplasm of Escherichia coli , 2005, Journal of bacteriology.

[80]  Weng Kee Wong,et al.  Application of fractional factorial designs to study drug combinations , 2013, Statistics in medicine.

[81]  Morten H. Christiansen,et al.  On The Evolutionary Origin of Symbolic Communication , 2016, Scientific Reports.

[82]  Corrado Priami,et al.  A Rule-Based and Imperative Language for Biochemical Modeling and Simulation , 2012, SEFM.

[83]  Monika Heiner,et al.  Petri Nets for Systems and Synthetic Biology , 2008, SFM.

[84]  Roeland M. H. Merks,et al.  Cellular Potts Modeling of Tumor Growth, Tumor Invasion, and Tumor Evolution , 2013, Front. Oncol..

[85]  Thomas Höfer,et al.  Three-Dimensional Gradients of Cytokine Signaling between T Cells , 2015, PLoS Comput. Biol..

[86]  Ion Petre,et al.  ODE Analysis of Biological Systems , 2013, SFM.

[87]  A. Spada,et al.  Crystal structures of human factor Xa complexed with potent inhibitors. , 2000, Journal of medicinal chemistry.

[88]  K. Rejniak An immersed boundary framework for modelling the growth of individual cells: an application to the early tumour development. , 2007, Journal of theoretical biology.

[89]  Jeremy E Purvis,et al.  Pairwise agonist scanning predicts cellular signaling responses to combinatorial stimuli , 2010, Nature Biotechnology.

[90]  Jonathan R. Karr,et al.  Emerging whole-cell modeling principles and methods. , 2017, Current opinion in biotechnology.

[91]  Vincent Rodin,et al.  Formal Validation of Asynchronous Interaction-Agents Algorithms for Reaction-Diffusion Problems , 2007, 21st International Workshop on Principles of Advanced and Distributed Simulation (PADS'07).

[92]  Douglas A. Lauffenburger,et al.  Synergistic Communication between CD4+ T Cells and Monocytes Impacts the Cytokine Environment , 2016, Scientific Reports.

[93]  Andrei L. Turinsky,et al.  Intercellular network structure and regulatory motifs in the human hematopoietic system , 2014, Molecular systems biology.

[94]  Mark Isalan,et al.  A three-step framework for programming pattern formation. , 2017, Current opinion in chemical biology.

[95]  David Harel,et al.  Biocharts: a visual formalism for complex biological systems , 2009, Journal of The Royal Society Interface.

[96]  M. Harmsen,et al.  Endothelial progenitor cell-based neovascularization: implications for therapy. , 2009, Trends in molecular medicine.

[97]  K. Dill,et al.  How Water’s Properties Are Encoded in Its Molecular Structure and Energies , 2017, Chemical reviews.

[98]  Khashayar Kotobi,et al.  An agent-based framework for performance modeling of an optimistic parallel discrete event simulator , 2013, Complex Adapt. Syst. Model..

[99]  Pierre Glize,et al.  Speeding up the Search of a Global Dynamic Equilibrium from a Local Cooperative Decision , 2018, ICAART.

[100]  Nicholas R. Jennings,et al.  Socially Responsible Decision Making by Autonomous Agents , 1999 .

[101]  Alexander G. Fletcher,et al.  Chaste: An Open Source C++ Library for Computational Physiology and Biology , 2013, PLoS Comput. Biol..

[102]  Nancy L Allbritton,et al.  CRITICAL REVIEW www.rsc.org/loc | Lab on a Chip Analysis of single mammalian cells on-chip , 2006 .

[103]  Matthew Quinn,et al.  Evolving Communication without Dedicated Communication Channels , 2001, ECAL.

[104]  Darren J. Wilkinson,et al.  Bayesian methods in bioinformatics and computational systems biology , 2006, Briefings Bioinform..

[105]  Michael Doebeli,et al.  Division of labour and the evolution of multicellularity , 2011, Proceedings of the Royal Society B: Biological Sciences.

[106]  H. Lodish,et al.  Overview of Extracellular Signaling , 2000 .

[107]  R. Solé,et al.  Emergence of proto-organisms from bistable stochastic differentiation and adhesion , 2015, Journal of The Royal Society Interface.

[108]  Gerhard Weiss,et al.  Multiagent systems: a modern approach to distributed artificial intelligence , 1999 .

[109]  R. Quatrano Genomics , 1998, Plant Cell.

[110]  Pierre Glize,et al.  Conception de systèmes adaptatifs à fonctionnalité émergente : la théorie Amas , 2003, Rev. d'Intelligence Artif..

[111]  D. Cussac,et al.  The Grb2 adaptor , 1995, FEBS letters.

[112]  C. Venot,et al.  Discovery of the first non-ATP competitive IGF-1R kinase inhibitors: advantages in comparison with competitive inhibitors. , 2011, Bioorganic & medicinal chemistry letters.

[113]  Prasad Dhurjati,et al.  A simple and accurate rule-based modeling framework for simulation of autocrine/paracrine stimulation of glioblastoma cell motility and proliferation by L1CAM in 2-D culture , 2017, BMC Systems Biology.

[114]  D. Kirk,et al.  Seeking the Ultimate and Proximate Causes of Volvox Multicellularity and Cellular Differentiation1 , 2003, Integrative and comparative biology.

[115]  Michel Dumontier,et al.  GridCell: a stochastic particle-based biological system simulator , 2008, BMC Systems Biology.

[116]  Hod Lipson,et al.  Evolutionary Robotics: Emergence of Communication , 2007, Current Biology.

[117]  Mihaela Ulieru,et al.  Emergent engineering: a radical paradigm shift , 2011, Int. J. Auton. Adapt. Commun. Syst..

[118]  Xiaobo Zhou,et al.  Modeling Cell–Cell Interactions in Regulating Multiple Myeloma Initiating Cell Fate , 2014, IEEE Journal of Biomedical and Health Informatics.

[119]  Jesús A. Izaguirre,et al.  A framework for three-dimensional simulation of morphogenesis , 2005, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[120]  B Franz Lang,et al.  The origins of multicellularity: a multi-taxon genome initiative. , 2007, Trends in genetics : TIG.

[121]  H. Lodish Molecular Cell Biology , 1986 .

[122]  D. Floreano,et al.  Evolutionary Conditions for the Emergence of Communication in Robots , 2007, Current Biology.

[123]  Susanne Ditlevsen,et al.  Introduction to stochastic models in biology. , 2013 .

[124]  Javier Carrera,et al.  Why Build Whole-Cell Models? , 2015, Trends in cell biology.

[125]  Yuji Sugita,et al.  Complete atomistic model of a bacterial cytoplasm for integrating physics, biochemistry, and systems biology. , 2015, Journal of molecular graphics & modelling.

[126]  Kurt Kremer Computer Simulations in Soft Matter Science , 2000 .

[127]  Hartmut Dickhaus,et al.  Bridging the scales: semantic integration of quantitative SBML in graphical multi-cellular models and simulations with EPISIM and COPASI , 2013, Bioinform..

[128]  Franco Zambonelli,et al.  Methodological Guidelines for Engineering Self-organization and Emergence , 2015, The ASCENS Approach.

[129]  Ka Bian,et al.  Discovery of the nitric oxide signaling pathway and targets for drug development. , 2009, Frontiers in bioscience.

[130]  Martin Meier-Schellersheim,et al.  Multiscale modeling for biologists , 2009, Wiley interdisciplinary reviews. Systems biology and medicine.

[131]  Jean-Pierre Mano,et al.  Bio-inspired Mechanisms for Artificial Self-organised Systems , 2006, Informatica.

[132]  Jennifer T. Pentz,et al.  Cellular packing, mechanical stress and the evolution of multicellularity , 2017, Nature physics.

[133]  S. Hartmann,et al.  Models in Science , 2006 .

[134]  Scott J. Hultgren,et al.  Morphological plasticity as a bacterial survival strategy , 2008, Nature Reviews Microbiology.

[135]  Lincoln Smith,et al.  Evolving controllers for a homogeneous system of physical robots: structured cooperation with minimal sensors , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[136]  Djamila Ahfouda,et al.  Modélisation et simulation multi-agents d'un environnement multi-robots , 2013 .

[137]  Sébastien Maignan,et al.  SAR156497, an exquisitely selective inhibitor of aurora kinases. , 2014, Journal of medicinal chemistry.

[138]  Jane Hillston,et al.  PALOMA: A Process Algebra for Located Markovian Agents , 2014, QEST.

[139]  M. Vaney,et al.  High-resolution structure (1.33 A) of a HEW lysozyme tetragonal crystal grown in the APCF apparatus. Data and structural comparison with a crystal grown under microgravity from SpaceHab-01 mission. , 1996, Acta crystallographica. Section D, Biological crystallography.

[140]  Mudita Singhal,et al.  COPASI - a COmplex PAthway SImulator , 2006, Bioinform..

[141]  M. Travisano,et al.  Synergistic cooperation promotes multicellular performance and unicellular free-rider persistence , 2017, Nature Communications.

[142]  M. Mathieu,et al.  Novel pyrazinone inhibitors of mast cell tryptase: synthesis and SAR evaluation. , 2004, Bioorganic & medicinal chemistry letters.

[143]  R. Grosberg,et al.  The Evolution of Multicellularity: A Minor Major Transition? , 2007 .

[144]  Kevin Thurley,et al.  Modeling Cell-to-Cell Communication Networks Using Response-Time Distributions , 2018, Cell systems.

[145]  E. Flores,et al.  Compartmentalized function through cell differentiation in filamentous cyanobacteria , 2010, Nature Reviews Microbiology.

[146]  A. Voss-Böhme Multi-Scale Modeling in Morphogenesis: A Critical Analysis of the Cellular Potts Model , 2012, PloS one.

[147]  Subhadip Raychaudhuri,et al.  Kinetic Monte Carlo Simulation in Biophysics and Systems Biology , 2013 .