Some results about nullnorms on bounded lattices

Abstract Nullnorms as a generalization of the concepts of t-norms and t-conorms admit a zero element to be any element in a bounded lattice. In this paper, we discuss the characterization of idempotent nullnorms on bounded lattices and investigate some of the main properties of them. We propose some new methods yielding nullnorms, in particular idempotent nullnorms, on bounded lattices with the fixed zero element under some additional constraints. Moreover, some illustrative examples are presented to demonstrate the feasibility of the proposed methods.

[1]  Radko Mesiar,et al.  Nullnorms on bounded lattices , 2015, Inf. Sci..

[2]  Martin Kalina,et al.  Nullnorms and T-Operators on Bounded Lattices: Coincidence and Differences , 2018, IPMU.

[3]  Gül Deniz Çayli,et al.  On the structure of uninorms on bounded lattices , 2019, Fuzzy Sets Syst..

[4]  Gül Deniz Çayli,et al.  On a new class of t-norms and t-conorms on bounded lattices , 2018, Fuzzy Sets Syst..

[5]  Hua-Wen Liu,et al.  The conditional distributivity of nullnorms over uninorms , 2015, Aequationes mathematicae.

[6]  Bernard De Baets,et al.  The functional equations of Frank and Alsina for uninorms and nullnorms , 2001, Fuzzy Sets Syst..

[7]  Józef Drewniak,et al.  Distributivity between uninorms and nullnorms , 2008, Fuzzy Sets Syst..

[8]  Joan Torrens,et al.  The modularity condition for uninorms and t-operators , 2002, Fuzzy Sets Syst..

[9]  Joan Torrens,et al.  t-Operators , 1999, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[10]  M. J. Frank,et al.  Associative Functions: Triangular Norms And Copulas , 2006 .

[11]  D. Dubois,et al.  Fundamentals of fuzzy sets , 2000 .

[12]  Pawel Drygas,et al.  Distributivity between semi-t-operators and semi-nullnorms , 2015, Fuzzy Sets Syst..

[13]  Emel Asici An order induced by nullnorms and its properties , 2017, Fuzzy Sets Syst..

[14]  B. Schweizer,et al.  Statistical metric spaces. , 1960 .

[15]  M. J. Frank On the simultaneous associativity ofF(x,y) andx +y -F(x,y) , 1979 .

[16]  R. Mesiar,et al.  Aggregation operators: properties, classes and construction methods , 2002 .

[17]  K. Menger Statistical Metrics. , 1942, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Didier Dubois,et al.  A review of fuzzy set aggregation connectives , 1985, Inf. Sci..

[19]  Huawen Liu,et al.  On the distributivity of uninorms over nullnorms , 2013, Fuzzy Sets Syst..

[20]  Funda Karaçal,et al.  A Survey on Nullnorms on Bounded Lattices , 2017, EUSFLAT/IWIFSGN.

[21]  Funda Karaçal,et al.  Some Remarks on Idempotent Nullnorms on Bounded Lattices , 2017, AGOP.

[22]  Joan Torrens,et al.  The distributivity condition for uninorms and t-operators , 2002, Fuzzy Sets Syst..

[23]  Emel Asici,et al.  On the properties of the F-partial order and the equivalence of nullnorms , 2017, Fuzzy Sets Syst..

[24]  Funda Karaçal,et al.  Idempotent nullnorms on bounded lattices , 2018, Inf. Sci..

[25]  Qin Feng,et al.  The distributive equations for idempotent uninorms and nullnorms , 2005, Fuzzy Sets Syst..

[26]  Pawel Drygas,et al.  A characterization of idempotent nullnorms , 2004, Fuzzy Sets Syst..

[27]  Berthold Schweizer,et al.  Probabilistic Metric Spaces , 2011 .

[28]  Radko Mesiar,et al.  Aggregation operators with annihilator , 2005, Int. J. Gen. Syst..