An exact integral-to-sum relation for products of Bessel functions

A useful identity relating the infinite sum of two Bessel functions to their infinite integral was discovered in Dominici et al. (Dominici et al. 2012 Proc. R. Soc. A 468, 2667–2681). Here, we extend this result to products of N Bessel functions, and show it can be straightforwardly proven using the Abel-Plana theorem, or the Poisson summation formula. For N = 2, the proof is much simpler than that of Dominici et al. and significantly enlarges the range of validity.

[1]  D. Seery,et al.  The matter power spectrum in redshift space using effective field theory , 2017, Journal of Cosmology and Astroparticle Physics.

[2]  E.P.S. Shellard,et al.  Primordial non-Gaussianity and the CMB bispectrum , 2007 .

[3]  E. Trizac,et al.  When Random Walkers Help Solving Intriguing Integrals. , 2019, Physical review letters.

[4]  Pratt,et al.  Compton scattering of photons from bound electrons: Full relativistic independent-particle-approximation calculations. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[5]  Urovs Seljak,et al.  Lagrangian perturbation theory at one loop order: successes, failures, and improvements , 2014, 1410.1617.

[6]  Frank E. Harris,et al.  Mathematical Methods for Physicists: A Comprehensive Guide , 2012 .

[7]  S. Koch,et al.  Excitonic terahertz absorption in semiconductors with effective-mass anisotropies , 2016, 1602.02972.

[8]  Paul L. Butzer,et al.  The Summation Formulae of Euler–Maclaurin, Abel–Plana, Poisson, and their Interconnections with the Approximate Sampling Formula of Signal Analysis , 2011 .

[9]  The Generalized Abel-Plana formula with applications to Bessel functions and Casimir effect , 2000, 0708.1187.

[10]  Kerstin Vogler,et al.  Table Of Integrals Series And Products , 2016 .

[11]  C. Porciani,et al.  Cosmological information in the redshift-space bispectrum , 2018, Monthly Notices of the Royal Astronomical Society.

[12]  J. Kollmeier,et al.  Cosmological perturbation theory using the FFTLog: formalism and connection to QFT loop integrals , 2017, 1708.08130.

[13]  Niels Henrik Abel,et al.  Solution de quelques problèmes à l'aide d'intégrales définies , 2012 .

[14]  B. Fejzullahu On the integral representations for the confluent hypergeometric function , 2016, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[15]  Natalie Baddour,et al.  Operational and convolution properties of three-dimensional Fourier transforms in spherical polar coordinates. , 2010, Journal of the Optical Society of America. A, Optics, image science, and vision.

[16]  D. Ahn Black hole state evolution, final state and Hawking radiation , 2012 .

[17]  A. Kisselev Approximate formulas for moderately small eikonal amplitudes , 2015, 1511.02099.

[18]  P. Gill,et al.  A remarkable identity involving Bessel functions , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  Giuseppe Dattoli,et al.  Integrals of Bessel functions , 2011, Appl. Math. Lett..

[20]  J. Harms Terrestrial gravity fluctuations , 2019, Living Reviews in Relativity.

[21]  O. Philcox A faster Fourier transform? Computing small-scale power spectra and bispectra for cosmological simulations in 𝒪(N2) time , 2020, Monthly Notices of the Royal Astronomical Society.

[22]  M. Schmittfull,et al.  Rotation method for accelerating multiple-spherical Bessel function integrals against a numerical source function , 2019, 1912.00065.

[23]  Peter M W Gill,et al.  Resolutions of the Coulomb operator. VI. Computation of auxiliary integrals. , 2011, The Journal of chemical physics.

[24]  Andreas Hohenegger Solving the homogeneous Boltzmann equation with arbitrary scattering kernel , 2008, 0806.3098.

[25]  B. Schaefer,et al.  Intrinsic alignments and 3d weak gravitational lensing , 2013, 1306.6466.

[26]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[27]  A. Hamilton Uncorrelated modes of the non-linear power spectrum , 1999, astro-ph/9905191.

[28]  F. Olver Asymptotics and Special Functions , 1974 .

[29]  M. Schmittfull,et al.  Capturing non-Gaussianity of the large-scale structure with weighted skew-spectra , 2019, Journal of Cosmology and Astroparticle Physics.

[30]  K. Wendt,et al.  Local projections of low-momentum potentials , 2012, 1203.5993.

[31]  V. Cardoso,et al.  Exploring New Physics Frontiers Through Numerical Relativity , 2014, Living reviews in relativity.

[32]  C. Rockstuhl,et al.  Exact dipolar moments of a localized electric current distribution. , 2015, Optics express.

[33]  Z. Slepian On decoupling the integrals of cosmological perturbation theory , 2018, Monthly Notices of the Royal Astronomical Society.