Ionizing Electrons on the Martian Nightside: Structure and Variability

The precipitation of suprathermal electrons is the dominant external source of energy deposition and ionization in the Martian nightside upper atmosphere and ionosphere. We investigate the spatial patterns and variability of ionizing electrons from 115 to 600 km altitude on the Martian nightside, using CO2 electron impact ionization frequency (EIIF) as our metric, examining more than 3 years of data collected in situ by the Mars Atmosphere and Volatile EvolutioN spacecraft. We characterize the behavior of EIIF with respect to altitude, solar zenith angle, solar wind pressure, and the geometry and strength of crustal magnetic fields. EIIF has a complex and correlated dependence on these factors, but we find that it generally increases with altitude and solar wind pressure, decreases with crustal magnetic field strength and does not depend detectably on solar zenith angle past 115°. The dependence is governed by (a) energy degradation and backscatter by collisions with atmospheric neutrals below ~220 km and (b) magnetic field topology that permits or retards electron access to certain regions. This field topology is dynamic and varies with solar wind conditions, allowing greater electron access at higher altitudes where crustal fields are weaker and also for higher solar wind pressures, which result in stronger draped magnetic fields that push closed crustal magnetic field loops to lower altitudes. This multidimensional electron flux behavior can in the future be parameterized in an empirical model for use as input to global simulations of the nightside upper atmosphere, which currently do not account for this important source of energy.

[1]  D. Mitchell,et al.  Field‐Aligned Electrostatic Potentials Above the Martian Exobase From MGS Electron Reflectometry: Structure and Variability , 2018 .

[2]  D. Mitchell,et al.  Ion Densities in the Nightside Ionosphere of Mars: Effects of Electron Impact Ionization , 2017, Geophysical research letters.

[3]  B. Jakosky,et al.  The Effect of Solar Wind Variations on the Escape of Oxygen Ions From Mars Through Different Channels: MAVEN Observations , 2017 .

[4]  D. Mitchell,et al.  Characterization of Low‐Altitude Nightside Martian Magnetic Topology Using Electron Pitch Angle Distributions , 2017 .

[5]  Bruce M. Jakosky,et al.  Nightside ionosphere of Mars: Composition, vertical structure, and variability , 2017 .

[6]  B. Jakosky,et al.  The MAVEN EUVM model of solar spectral irradiance variability at Mars: Algorithms and results , 2017 .

[7]  B. Jakosky,et al.  Photochemical escape of oxygen from Mars: First results from MAVEN in situ data , 2017 .

[8]  B. Jakosky,et al.  He bulge revealed: He and CO2 diurnal and seasonal variations in the upper atmosphere of Mars as detected by MAVEN NGIMS , 2017 .

[9]  B. Jakosky,et al.  Comparative study of the Martian suprathermal electron depletions based on Mars Global Surveyor, Mars Express and Mars Atmosphere and Volatile Evolution missions observations , 2016 .

[10]  B. Jakosky,et al.  Structure, dynamics, and seasonal variability of the Mars‐solar wind interaction: MAVEN Solar Wind Ion Analyzer in‐flight performance and science results , 2017 .

[11]  B. Jakosky,et al.  Martian low‐altitude magnetic topology deduced from MAVEN/SWEA observations , 2016 .

[12]  B. Jakosky,et al.  Deep nightside photoelectron observations by MAVEN SWEA: Implications for Martian northern hemispheric magnetic topology and nightside ionosphere source , 2016 .

[13]  J. Rouzaud,et al.  The MAVEN Solar Wind Electron Analyzer , 2016 .

[14]  Alexander D. Shane,et al.  Mars nightside electrons over strong crustal fields , 2015 .

[15]  Arnett,et al.  The Neutral Gas and Ion Mass Spectrometer on the Mars Atmosphere and Volatile Evolution Mission , 2015 .

[16]  Bruce M. Jakosky,et al.  The Solar Wind Ion Analyzer for MAVEN , 2015 .

[17]  B. Jakosky,et al.  Altitude dependence of nightside Martian suprathermal electron depletions as revealed by MAVEN observations , 2015 .

[18]  B. Jakosky,et al.  Electric Mars: The first direct measurement of an upper limit for the Martian “polar wind” electric potential , 2015 .

[19]  Bruce M. Jakosky,et al.  Strong plume fluxes at Mars observed by MAVEN: An important planetary ion escape channel , 2015 .

[20]  B. Jakosky,et al.  The spatial distribution of planetary ion fluxes near Mars observed by MAVEN , 2015 .

[21]  B. Jakosky,et al.  Mars heavy ion precipitating flux as measured by Mars Atmosphere and Volatile EvolutioN , 2015 .

[22]  V. Tenishev,et al.  Hot oxygen corona at Mars and the photochemical escape of oxygen: Improved description of the thermosphere, ionosphere, and exosphere , 2015 .

[23]  B. Jakosky,et al.  Discovery of diffuse aurora on Mars , 2015, Science.

[24]  F. LeBlanc,et al.  Characterizing Atmospheric Escape from Mars Today and Through Time, with MAVEN , 2015 .

[25]  T. Woods,et al.  The Solar Extreme Ultraviolet Monitor for MAVEN , 2015 .

[26]  R. Lillis,et al.  Electron impact ionization in the Martian atmosphere: Interplay between scattering and crustal magnetic field effects , 2015 .

[27]  J. Connerney,et al.  The MAVEN Magnetic Field Investigation , 2015 .

[28]  A. Ridley,et al.  Mars Global Ionosphere‐Thermosphere Model: Solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere , 2015 .

[29]  M. Grott,et al.  A spherical harmonic model of the lithospheric magnetic field of Mars , 2014 .

[30]  V. Tenishev,et al.  Hot carbon corona in Mars’ upper thermosphere and exosphere: 1. Mechanisms and structure of the hot corona for low solar activity at equinox , 2014 .

[31]  S. Barabash,et al.  Solar cycle effects on the ion escape from Mars , 2013 .

[32]  Matthew Fillingim,et al.  Electrodynamics of the Martian dynamo region near magnetic cusps and loops , 2013 .

[33]  Francisco Gonzalez-Galindo,et al.  Three‐dimensional Martian ionosphere model: I. The photochemical ionosphere below 180 km , 2013 .

[34]  Robert J. Lillis,et al.  Nightside electron precipitation at Mars: Geographic variability and dependence on solar wind conditions , 2013 .

[35]  M. Kelley,et al.  The Mars Atmosphere and Volatile Evolution (MAVEN) Mission , 2013 .

[36]  Carol S. Paty,et al.  On wind-driven electrojets at magnetic cusps in the nightside ionosphere of Mars , 2012, Earth, Planets and Space.

[37]  Matthew O. Fillingim,et al.  Three-dimensional structure of the Martian nightside ionosphere: Predicted rates of impact ionization from Mars Global Surveyor magnetometer and electron reflectometer measurements of precipitating electrons , 2011 .

[38]  Jin‐Bin Cao,et al.  Electron loss and acceleration during storm time: The contribution of wave‐particle interaction, radial diffusion, and transport processes , 2011 .

[39]  Donald A. Gurnett,et al.  Areas of enhanced ionization in the deep nightside ionosphere of Mars , 2011 .

[40]  S. Barabash,et al.  Low‐altitude acceleration of ionospheric ions at Mars , 2011 .

[41]  Firdevs Duru,et al.  Nightside ionosphere of Mars: Radar soundings by the Mars Express spacecraft , 2010 .

[42]  Laura Marie Peticolas,et al.  Localized ionization patches in the nighttime ionosphere of Mars and their electrodynamic consequences , 2010 .

[43]  A. Hać,et al.  Photochemical escape of oxygen from Mars: A comparison of the exobase approximation to a Monte Carlo method , 2009 .

[44]  R. Lin,et al.  Nightside ionosphere of Mars: Modeling the effects of crustal magnetic fields and electron pitch angle distributions on electron impact ionization , 2009 .

[45]  R. Lundin,et al.  A comet‐like escape of ionospheric plasma from Mars , 2008 .

[46]  D. Mitchell,et al.  Electron reflectometry in the martian atmosphere , 2008 .

[47]  A. Ivanov,et al.  Estimation of the total electron content of the Martian ionosphere using radar sounder surface echoes , 2007 .

[48]  D. Mitchell,et al.  Electron pitch angle distributions as indicators of magnetic field topology near Mars , 2007 .

[49]  Jean Lilensten,et al.  Origins of the Martian aurora observed by Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars (SPICAM) on board Mars Express , 2006 .

[50]  D. Mitchell,et al.  On the origin of aurorae on Mars , 2006 .

[51]  Oleg Korablev,et al.  Discovery of an aurora on Mars , 2005, Nature.

[52]  D. Mitchell,et al.  Mapping crustal magnetic fields at Mars using electron reflectometry , 2004 .

[53]  Dana Hurley Crider,et al.  The plasma Environment of Mars , 2004 .

[54]  F. Bakalian,et al.  Photochemical escape of atomic carbon from Mars , 2001 .

[55]  D. Mitchell,et al.  Probing Mars' crustal magnetic field and ionosphere with the MGS Electron Reflectometer , 2001 .

[56]  Robert E. Johnson,et al.  Evolutionary impact of sputtering of the Martian atmosphere by O+ pickup ions , 1992 .

[57]  J. Kurths,et al.  Magnetic fields near Mars: first results , 1989, Nature.

[58]  B. Hultqvist,et al.  First measurements of the ionospheric plasma escape from Mars , 1989, Nature.

[59]  J. Fox,et al.  Electron Impact Cross Sections for Use in Modeling the Ionospheres/Thermospheres of the Earth and Planets , 2000 .