Enhanced photocatalytic degradation of methylene blue and methyl orange by ZnO:Eu nanoparticles

[1]  R. Amal,et al.  Progress in Heterogeneous Photocatalysis: From Classical Radical Chemistry to Engineering Nanomaterials and Solar Reactors. , 2012, The journal of physical chemistry letters.

[2]  A. Duţă,et al.  Photocatalytic activity of cadmium doped TiO2 films for photocatalytic degradation of dyes , 2009 .

[3]  Y. Ho,et al.  Pseudo-second order model for sorption processes , 1999 .

[4]  S. Lam,et al.  Hydrothermal synthesis of europium-doped flower-like ZnO hierarchical structures with enhanced sunlight photocatalytic degradation of phenol , 2016 .

[5]  N. Biyikli,et al.  Surface-decorated ZnO nanoparticles and ZnO nanocoating on electrospun polymeric nanofibers by atomic layer deposition for flexible photocatalytic nanofibrous membranes , 2013 .

[6]  Z. Y. Xue,et al.  Photoluminescence of ZnO films excited with light of different wavelength , 2003 .

[7]  Hong He,et al.  Synthesis and photoluminescence of Eu-doped ZnO microrods prepared by hydrothermal method , 2009 .

[8]  Ruiping Wang,et al.  An Electron Density Residual Study of Zinc Oxide , 1996 .

[9]  Pengyi Zhang,et al.  Photocatalytic decomposition of perfluorooctanoic acid (PFOA) by TiO2 in the presence of oxalic acid. , 2011, Journal of hazardous materials.

[10]  Yan Zong,et al.  Synthesis and high photocatalytic activity of Eu-doped ZnO nanoparticles , 2014 .

[11]  C. Baiocchi,et al.  Characterization of methyl orange and its photocatalytic degradation products by HPLC/UV–VIS diode array and atmospheric pressure ionization quadrupole ion trap mass spectrometry , 2002 .

[12]  N. Biyikli,et al.  Role of zinc interstitials and oxygen vacancies of ZnO in photocatalysis: a bottom-up approach to control defect density. , 2014, Nanoscale.

[13]  Junbo Zhong,et al.  Improved photocatalytic performance of Pd-doped ZnO , 2012 .

[14]  Ping Yang,et al.  Titanium dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis , 2002 .

[15]  David F. Ollis,et al.  Photocatalytic degradation of organic water contaminants: Mechanisms involving hydroxyl radical attack , 1990 .

[16]  J. Yates,et al.  Monitoring hole trapping in photoexcited TiO2(110) using a surface photoreaction. , 2005, The journal of physical chemistry. B.

[17]  W. Jaegermann,et al.  Electronic structure of methoxy-, bromo-, and nitrobenzene grafted onto Si(111). , 2006, The journal of physical chemistry. B.

[18]  Z. Li,et al.  Photocatalytic Degradation of Methylene Blue Using TiO2 Impregnated Diatomite , 2014 .

[19]  L. Schmidt‐Mende,et al.  ZnO - nanostructures, defects, and devices , 2007 .

[20]  S. Bhat,et al.  Interaction of Methyl Orange with Submicellar Cationic Surfactants , 1993 .

[21]  L. Ismail,et al.  Silica coating and photocatalytic activities of ZnO nanoparticles: effect of operational parameters and kinetic study. , 2014, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[22]  C. Ronda,et al.  Luminescence : from theory to applications , 2008 .

[23]  Z. Xiong,et al.  Photocatalytic degradation of dyes over graphene-gold nanocomposites under visible light irradiation. , 2010, Chemical communications.

[24]  K. Cromack,et al.  Photoinduced Hole Transfer from TiO2 to Methanol Molecules in Aqueous-Solution Studied by Electron-Paramagnetic-Resonance , 1993 .

[25]  M. Barteau,et al.  Chapter 10 – Principles of Reactivity from Studies of Organic Reactions on Model Oxide Surfaces , 2001 .

[26]  B. Stuart Infrared Spectroscopy , 2004, Analytical Techniques in Forensic Science.

[27]  A. H. Ansari,et al.  Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: Potential role as nano-antibiotics , 2016, Scientific Reports.

[28]  A. Speghini,et al.  Structure−Luminescence Correlations in Europium-Doped Sol−Gel ZnO Nanopowders , 2008 .

[29]  R. Schlögl,et al.  In situ XPS study of methanol reforming on PdGa near-surface intermetallic phases , 2012, Journal of catalysis.

[30]  Mohammad Mansoob Khan,et al.  Au@TiO2 nanocomposites for the catalytic degradation of methyl orange and methylene blue: An electron relay effect , 2014 .

[31]  Chongqi Chen,et al.  Luminescence and photocatalytic activity of ZnO nanocrystals: correlation between structure and property. , 2007, Inorganic chemistry.

[32]  D. Hofmann,et al.  Interaction of methanol with ZnO surfaces at low temperatures , 1984 .

[33]  N. Singh,et al.  Methyl red degradation under UV illumination and catalytic action of commercial ZnO: a parametric study , 2015 .

[34]  M. Plater A degradation product of methylene blue , 2003 .

[35]  D. Troya,et al.  How solvent modulates hydroxyl radical reactivity in hydrogen atom abstractions. , 2010, Journal of the American Chemical Society.

[36]  T. Peng,et al.  Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles. , 2007, Chemosphere.

[37]  J. Killian,et al.  CHEMICAL STUDIES ON POLYCHROME METHYLENE BLUE1 , 1926 .

[38]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[39]  Chun-yan Liu,et al.  Catalytic properties of silver nanoparticles supported on silica spheres. , 2005, The journal of physical chemistry. B.

[40]  Xiaoyang Liu,et al.  Synthesis and optical properties of Eu-doped ZnO nanosheets by hydrothermal method , 2011 .

[41]  V. Djoković,et al.  ZnO/Ag hybrid nanocubes in alginate biopolymer: Synthesis and properties , 2014 .

[42]  Kevin J. Wilkinson,et al.  Agglomeration and dissolution of zinc oxide nanoparticles: role of pH, ionic strength and fulvic acid , 2013 .

[43]  A. Mohamed,et al.  Sunlight photocatalytic activity enhancement and mechanism of novel europium-doped ZnO hierarchical micro/nanospheres for degradation of phenol , 2014 .

[44]  D. Barreca,et al.  Tailored synthesis of ZnO:Er(III) nanosystems by a hybrid rf-sputtering/sol-gel route , 2006 .

[45]  Jiaguo Yu,et al.  Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres. , 2008, Environmental science & technology.

[46]  N. Thromat,et al.  XPS study of Eu(III) coordination compounds: Core levels binding energies in solid mixed-oxo-compounds EumXxOy , 2006 .

[47]  D. Bahadur,et al.  The role of reduced graphene oxide capping on defect induced ferromagnetism of ZnO nanorods , 2013, Nanotechnology.

[48]  C. Karunakaran,et al.  Preparation and characterization of antimicrobial Ce-doped ZnO nanoparticles for photocatalytic detoxification of cyanide , 2010 .

[49]  H. E. Çamurlu,et al.  Sn4+ or Ce3+ doped TiO2 photocatalytic nanometric films on antireflective nano-SiO2 coated glass , 2010 .

[50]  David P. Norton,et al.  Recent progress in processing and properties of ZnO , 2003 .

[51]  Z. Li,et al.  In situ IR study of surface hydroxyl species of dehydrated TiO2: towards understanding pivotal surface processes of TiO2 photocatalytic oxidation of toluene. , 2012, Physical chemistry chemical physics : PCCP.

[52]  B. Satpati,et al.  Enhanced photocatalytic activity of Co doped ZnO nanodisks and nanorods prepared by a facile wet chemical method. , 2014, Physical chemistry chemical physics : PCCP.

[53]  P. Krzeminski,et al.  Impact of inflow conditions on activated sludge filterability and membrane bioreactor (MBR) operational performance , 2015 .

[54]  M. A. Henderson A surface science perspective on TiO2 photocatalysis , 2011 .

[55]  H. Langhals Color Chemistry. Synthesis, Properties and Applications of Organic Dyes and Pigments. 3rd revised edition. By Heinrich Zollinger. , 2004 .

[56]  M. Khatamian,et al.  Heterogeneous photocatalytic degradation of 4-nitrophenol in aqueous suspension by Ln (La3+, Nd3+ or Sm3+) doped ZnO nanoparticles , 2012 .

[57]  K. Karukstis,et al.  Spectroscopic Studies of the Interaction of Methyl Orange with Cationic Alkyltrimethylammonium Bromide Surfactants , 1998 .

[58]  Alexander G. Agrios,et al.  Probing multiple effects of TiO2 sintering temperature on photocatalytic activity in water by use of a series of organic pollutant molecules , 2007 .

[59]  A. Emeline,et al.  Factors affecting the efficiency of a photocatalyzed process in aqueous metal-oxide dispersions: Prospect of distinguishing between two kinetic models , 2000 .

[60]  Marek Kosmulski,et al.  Chemical properties of material surfaces , 2001 .

[61]  M. Alves,et al.  Dyes—Environmental Impact and Remediation , 2012 .

[62]  Kam Sing Wong,et al.  Defect emissions in ZnO nanostructures , 2007 .

[63]  A. Ross,et al.  Reactivity of HO2/O−2 Radicals in Aqueous Solution , 1985 .

[64]  Y. Agrawal,et al.  Rare Earth-Doped Zinc Oxide Nanostructures: A Review , 2016 .

[65]  Yibing Xie,et al.  Characterization and photocatalysis of Eu3+–TiO2 sol in the hydrosol reaction system , 2004 .

[66]  A. Selloni,et al.  Bulk and Surface Polarons in Photoexcited Anatase TiO2 , 2011 .

[67]  G. Branković,et al.  Solvothermal syntheses of nano- and micro-sized ZnO powders with a controllable morphology , 2012, Journal of Sol-Gel Science and Technology.

[68]  William L. Warren,et al.  Correlation between photoluminescence and oxygen vacancies in ZnO phosphors , 1996 .

[69]  Vijay Kumar,et al.  Effect of Eu doping on the photoluminescence properties of ZnO nanophosphors for red emission applications , 2014 .

[70]  S. Ong,et al.  Biodegradation of redox dye Methylene Blue by up-flow anaerobic sludge blanket reactor. , 2005, Journal of hazardous materials.

[71]  Claudio Minero,et al.  Photocatalytic Transformation of Organic Compounds in the Presence of Inorganic Anions. 1. Hydroxyl-Mediated and Direct Electron-Transfer Reactions of Phenol on a Titanium Dioxide−Fluoride System , 2000 .

[72]  Guonan Chen,et al.  Study on the photocatalytic degradation of methyl orange in water using Ag/ZnO as catalyst by liquid chromatography electrospray ionization ion-trap mass spectrometry , 2008, Journal of the American Society for Mass Spectrometry.

[73]  A. Morris,et al.  Non-Nernstian two-electron transfer photocatalysis at metalloporphyrin-TiO2 interfaces. , 2011, Journal of the American Chemical Society.

[74]  Ting-ting Chen,et al.  The exceptional photo-catalytic activity of ZnO/RGO composite via metal and oxygen vacancies , 2013 .

[75]  T. Thongtem,et al.  Synthesis and Characterization of Europium-Doped Zinc Oxide Photocatalyst , 2014 .

[76]  K. Hashimoto,et al.  Photocatalysis and Photoinduced Hydrophilicity of Various Metal Oxide Thin Films , 2002 .

[77]  G. Socrates,et al.  Infrared and Raman characteristic group frequencies : tables and charts , 2001 .

[78]  M. S. Chen,et al.  Kinetic and Spectroscopic Studies of Vinyl Acetate Synthesis Over Pd(100) , 2006 .

[79]  C. Baiocchi,et al.  Analytical control of photocatalytic treatments: degradation of a sulfonated azo dye , 2004, Analytical and bioanalytical chemistry.

[80]  P. V. Korake,et al.  Photocatalytic activity of Eu3+-doped ZnO nanorods synthesized via microwave assisted technique , 2014 .

[81]  Y. Ho Review of second-order models for adsorption systems. , 2006, Journal of hazardous materials.

[82]  A. Mohamed,et al.  Transition metal oxide loaded ZnO nanorods: Preparation, characterization and their UV–vis photocatalytic activities , 2014 .

[83]  N. R. Khalid,et al.  Preparation of highly efficient Al-doped ZnO photocatalyst by combustion synthesis , 2013 .

[84]  W. Daoud,et al.  Selective adsorption and photocatalysis of low-temperature base-modified anatase nanocrystals , 2012 .

[85]  Gordon McKay,et al.  The kinetics of sorption of divalent metal ions onto sphagnum moss peat , 2000 .

[86]  K. Strutyński,et al.  Alkaline hydrogen peroxide as a degradation agent of methylene blue—kinetic and mechanistic studies , 2010 .

[87]  K. A. Connors Chemical Kinetics: The Study of Reaction Rates in Solution , 1990 .

[88]  Qing Yang,et al.  Synthesis and luminescent property of single-crystal ZnO nanobelts by a simple low temperature evaporation route , 2004 .

[89]  H. Abdul Aziz,et al.  Aggregation and disaggregation of ZnO nanoparticles: influence of pH and adsorption of Suwannee River humic acid. , 2014, The Science of the total environment.

[90]  Gang Yu,et al.  Photocatalytic degradation of PCP-Na over BiOI nanosheets under simulated sunlight irradiation , 2009 .

[91]  A. Stroyuk,et al.  Photochemical synthesis of ZnO/Ag nanocomposites , 2007 .

[92]  Joaquim L. Faria,et al.  Photochemical and photocatalytic degradation of an azo dye in aqueous solution by UV irradiation , 2003 .

[93]  J. Herrmann,et al.  Photocatalytic degradation pathway of methylene blue in water , 2001 .

[94]  R. L. Mayer Compounds of quinone structure as allergens and cancerogenic agents , 1950, Experientia.

[95]  E. Brillas,et al.  Aniline degradation by Electro-Fenton and peroxi-coagulation processes using a flow reactor for wastewater treatment. , 2002, Chemosphere.

[96]  K. Kobayakawa,et al.  Influence of the Density of Surface Hydroxyl Groups on TiO2 Photocatalytic Activities , 1990 .

[97]  S. Sampath,et al.  Graphene and graphene oxide as effective adsorbents toward anionic and cationic dyes. , 2011, Journal of colloid and interface science.

[98]  Yasuhiro Shiraishi,et al.  Adsorption-driven photocatalytic activity of mesoporous titanium dioxide. , 2005, Journal of the American Chemical Society.

[99]  Bruno K. Meyer,et al.  Behind the weak excitonic emission of ZnO quantum dots: ZnO/Zn(OH)2 core-shell structure , 2002 .

[100]  M. El-Sayed,et al.  Energy-transfer efficiency in Eu-doped ZnO thin films: the effects of oxidative annealing on the dynamics and the intermediate defect states. , 2014, ACS applied materials & interfaces.

[101]  F. Dong,et al.  Sol–gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles , 2011 .

[102]  P. Pichat Photocatalysis and water purification : from fundamentals to recent applications , 2013 .